A Partial Least Squares based algorithm for parsimonious variable selection

被引:72
|
作者
Mehmood, Tahir [1 ]
Martens, Harald [2 ]
Saebo, Solve [1 ]
Warringer, Jonas [2 ,3 ]
Snipen, Lars [1 ]
机构
[1] Norwegian Univ Life Sci, Dept Chem Biotechnol & Food Sci, Trondheim, Norway
[2] Norwegian Univ Life Sci, Ctr Integrat Genet CIGENE Anim & Aquacultural Sci, Trondheim, Norway
[3] Univ Gothenburg, Dept Cell & Mol Biol, Gothenburg, Sweden
来源
ALGORITHMS FOR MOLECULAR BIOLOGY | 2011年 / 6卷
关键词
NEAR-INFRARED SPECTROSCOPY; DIMENSIONAL GENOMIC DATA; SYNONYMOUS CODON USAGE; WAVELENGTH SELECTION; MULTIVARIATE CALIBRATION; BACTERIAL GENOME; PLS REGRESSION; ELIMINATION; LATENT; GENE;
D O I
10.1186/1748-7188-6-27
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: In genomics, a commonly encountered problem is to extract a subset of variables out of a large set of explanatory variables associated with one or several quantitative or qualitative response variables. An example is to identify associations between codon-usage and phylogeny based definitions of taxonomic groups at different taxonomic levels. Maximum understandability with the smallest number of selected variables, consistency of the selected variables, as well as variation of model performance on test data, are issues to be addressed for such problems. Results: We present an algorithm balancing the parsimony and the predictive performance of a model. The algorithm is based on variable selection using reduced-rank Partial Least Squares with a regularized elimination. Allowing a marginal decrease in model performance results in a substantial decrease in the number of selected variables. This significantly improves the understandability of the model. Within the approach we have tested and compared three different criteria commonly used in the Partial Least Square modeling paradigm for variable selection; loading weights, regression coefficients and variable importance on projections. The algorithm is applied to a problem of identifying codon variations discriminating different bacterial taxa, which is of particular interest in classifying metagenomics samples. The results are compared with a classical forward selection algorithm, the much used Lasso algorithm as well as Soft-threshold Partial Least Squares variable selection. Conclusions: A regularized elimination algorithm based on Partial Least Squares produces results that increase understandability and consistency and reduces the classification error on test data compared to standard approaches.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A review of variable selection methods in Partial Least Squares Regression
    Mehmood, Tahir
    Liland, Kristian Hovde
    Snipen, Lars
    Saebo, Solve
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2012, 118 : 62 - 69
  • [2] A novel multivariate calibration method based on variable adaptive boosting partial least squares algorithm
    Li, Pao
    Du, Guorong
    Ma, Yanjun
    Zhou, Jun
    Jiang, Liwen
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 176 : 157 - 161
  • [3] Improved variable reduction in partial least squares modelling based on Predictive-Property-Ranked Variables and adaptation of partial least squares complexity
    Andries, Jan P. M.
    Vander Heyden, Yvan
    Buydens, Lutgarde M. C.
    ANALYTICA CHIMICA ACTA, 2011, 705 (1-2) : 292 - 305
  • [4] Comparison of variable selection methods in partial least squares regression
    Mehmood, Tahir
    Saebo, Solve
    Liland, Kristian Hovde
    JOURNAL OF CHEMOMETRICS, 2020, 34 (06)
  • [5] A partition-based variable selection in partial least squares regression
    Li, Chuan-Quan
    Fang, Zhaoyu
    Xu, Qing-Song
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 198
  • [6] The successive projections algorithm for interval selection in partial least squares discriminant analysis
    de Sousa Fernandes, David Douglas
    Almeida, Valber Elias
    Pinto, Licarion
    Veras, Germano
    Harrop Galvao, Roberto Kawakami
    Gomes, Adriano Araujo
    Ugulino Araujo, Mario Cesar
    ANALYTICAL METHODS, 2016, 8 (41) : 7522 - 7530
  • [7] Boosting the Performance of Genetic Algorithms for Variable Selection in Partial Least Squares Spectral Calibrations
    Lavine, Barry K.
    White, Collin G.
    APPLIED SPECTROSCOPY, 2017, 71 (09) : 2092 - 2101
  • [8] A new and efficient variable selection algorithm based on ant colony optimization. Applications to near infrared spectroscopy/partial least-squares analysis
    Allegrini, Franco
    Olivieri, Alejandro C.
    ANALYTICA CHIMICA ACTA, 2011, 699 (01) : 18 - 25
  • [9] Soft variable selection combining partial least squares and attention mechanism for multivariable calibration
    Xiong, Yinran
    Yang, Wuye
    Liao, Huiyun
    Gong, Zhenlin
    Xu, Zhenzhen
    Du, Yiping
    Li, Wei
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2022, 223
  • [10] Partial least squares regression with conditional orthogonal projection for variable selection
    Wang, Jiangchuan
    Ma, Haiqiang
    Li, Chuanquan
    Liu, Qing
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (12) : 5752 - 5763