Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys

被引:66
作者
Antonov, Stoichko [1 ]
Detrois, Martin [2 ]
Tin, Sammy [1 ]
机构
[1] IIT, 10 W,32nd St, Chicago, IL 60616 USA
[2] Natl Energy Technol Lab, ORISE, 1450 Queen Ave SW, Albany, OR 97321 USA
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2018年 / 49A卷 / 01期
关键词
PHASE-STABILITY; ALLOYS; MICROSTRUCTURE; BEHAVIOR; AL8CO17CR17CU8FE17NI33; DIFFUSION; ELEMENTS; IMAGE;
D O I
10.1007/s11661-017-4399-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the gamma' precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the gamma' precipitates, while increasing the Fe content led to the destabilization of the gamma' precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.
引用
收藏
页码:305 / 320
页数:16
相关论文
共 50 条
  • [1] Phase stability and thermodynamic database validation in a set of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys
    Detrois, Martin
    Antonov, Stoichko
    Tin, Sammy
    INTERMETALLICS, 2019, 104 : 103 - 112
  • [2] Design and thermomechanical properties of a γ′ precipitate-strengthened Ni-based superalloy with high entropy γ matrix
    Detrois, Martin
    Jablonski, Paul D.
    Antonov, Stoichko
    Li, Shilei
    Ren, Yang
    Tin, Sammy
    Hawk, Jeffrey A.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 792 : 550 - 560
  • [3] Novel Ni-Co-Cr-Al eutectic high-entropy superalloys with superb mechanical properties
    Liu, Xuli
    Wu, Yidong
    Gao, Lei
    Dong, Zhao
    Zhu, Hao
    Hui, Xidong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1004
  • [4] On diffusion behaviors in face centered cubic phase of Al-Co-Cr-Fe-Ni-Ti high-entropy superalloys
    Chen, Shiyao
    Li, Qin
    Zhong, Jing
    Xing, Fangzhou
    Zhang, Lijun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 791 : 255 - 264
  • [5] Thermal stability and deformation mechanisms in Ni-Co-Fe-Cr-Al-Ti-Nb-type nanoparticle-strengthened high-entropy alloys
    Hou, J. X.
    Zhang, J. Y.
    Zhang, J. X.
    Luan, J. H.
    Wang, Y. X.
    Cao, B. X.
    Zhao, Y. L.
    Jiao, Z. B.
    Liu, X. J.
    Song, W. W.
    Liaw, P. K.
    Yang, T.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 167 : 171 - 183
  • [6] Model interatomic potentials for Fe-Ni-Cr-Co-Al high-entropy alloys
    Farkas, Diana
    Caro, Alfredo
    JOURNAL OF MATERIALS RESEARCH, 2020, 35 (22) : 3031 - 3040
  • [7] Improving high-temperature oxidation behavior by modifying Al and Co content in Al-Co-Cr-Fe-Ni high-entropy alloy
    Listyawan, Timothy Alexander
    Agustianingrum, Maya Putri
    Na, Young Sang
    Lim, Ka Ram
    Park, Nokeun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 129 : 115 - 126
  • [8] Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys
    Zhang, Chuan
    Zhang, Fan
    Diao, Haoyan
    Gao, Michael C.
    Tang, Zhi
    Poplawsky, Jonathan D.
    Liaw, Peter K.
    MATERIALS & DESIGN, 2016, 109 : 425 - 433
  • [9] Uncovering the eutectics design by machine learning in the Al-Co-Cr-Fe-Ni high entropy system
    Wu, Qingfeng
    Wang, Zhijun
    Hu, Xiaobing
    Zheng, Tao
    Yang, Zhongsheng
    He, Feng
    Li, Junjie
    Wang, Jincheng
    ACTA MATERIALIA, 2020, 182 : 278 - 286
  • [10] New Eutectic High-Entropy Alloys Based on Co-Cr-Fe-Mo-Ni-Al: Design, Characterization and Mechanical Properties
    Gasan, Hakan
    Ozcan, Akin
    METALS AND MATERIALS INTERNATIONAL, 2020, 26 (08) : 1152 - 1167