Achieving fast convergence of ab initio free energy perturbation calculations with the adaptive force-matching method

被引:24
|
作者
Pinnick, Eric R. [1 ]
Calderon, Camilo E. [1 ]
Rusnak, Andrew J. [1 ]
Wang, Feng [1 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Ab initio free energy perturbation; Adaptive force-matching; Static dielectric constant; Ice; DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS SIMULATION; 1ST PRINCIPLES SIMULATIONS; PARTICLE MESH EWALD; ELECTRONIC-STRUCTURE; LIQUID WATER; CONDENSED-PHASE; HYDROGEN-BONDS; ICE IH; MODEL;
D O I
10.1007/s00214-012-1146-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper studies the possibility of improving the convergence of ab initio free energy perturbation (FEP) calculations by developing customized force fields with the adaptive force-matching (AFM) method. The ab initio FEP method relies on a molecular mechanics (MM) potential to sample configuration space. If the Boltzmann weight of the MM sampling is close to that of the ab initio method, the efficiency of ab initio FEP will be optimal. The difference in the Boltzmann weights can be quantified by the relative energy difference distribution (REDD). The force field developed through AFM significantly improves the REDD when compared with standard MM models, thus improving the convergence of the ab initio FEP calculation. The static dielectric constant epsilon(s) of ice-Ih was studied with PW-91 through ab initio FEP. With a customized force field developed through AFM, we were able to converge epsilon(s) to 80 +/- 4 with 3,600 configurations. A similar ab initio FEP calculation with the TIP4P model would require 220 times more configurations to achieve the same accuracy. Our study indicates that the PW-91 functional underestimates ice-Ih epsilon(s) by about 20%.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A general method for constructing multidimensional molecular potential energy surfaces from ab initio calculations
    Ho, TS
    Rabitz, H
    JOURNAL OF CHEMICAL PHYSICS, 1996, 104 (07): : 2584 - 2597
  • [32] Relative solvation free energies calculated using an ab initio QM/MM-based free energy perturbation method: dependence of results on simulation length
    Reddy, M. Rami
    Erion, Mark D.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2009, 23 (12) : 837 - 843
  • [33] Relative solvation free energies calculated using an ab initio QM/MM-based free energy perturbation method: dependence of results on simulation length
    M. Rami Reddy
    Mark D. Erion
    Journal of Computer-Aided Molecular Design, 2009, 23 : 837 - 843
  • [34] Free Energy Calculations on Disulfide Bridges Reduction in Proteins by Combining ab Initio and Molecular Mechanics Methods
    David, Catalina
    Enescu, Mironel
    JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (08): : 3020 - 3027
  • [35] Doppler-free kinetic energy release spectrum of NO2+ and ab initio CI calculations
    Edvardsson, D
    Lundqvist, M
    Baltzer, P
    Wannberg, B
    Lunell, S
    CHEMICAL PHYSICS LETTERS, 1996, 256 (03) : 341 - 347
  • [36] Prediction of Alkanolamine pKa Values by Combined Molecular Dynamics Free Energy Simulations and ab Initio Calculations
    Noroozi, Javad
    Smith, William R.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2020, 65 (03): : 1358 - 1368
  • [37] AB INITIO FREE ENERGY CALCULATIONS OF THE SOLUBILITY OF SILICA IN METALLIC HYDROGEN AND APPLICATION TO GIANT PLANET CORES
    Gonzalez-Cataldo, F.
    Wilson, Hugh F.
    Militzer, B.
    ASTROPHYSICAL JOURNAL, 2014, 787 (01):
  • [38] High-pressure phase diagram of beryllium from ab initio free-energy calculations
    Wu, Jizhou
    Gonzalez-Cataldo, Felipe
    Militzer, Burkhard
    PHYSICAL REVIEW B, 2021, 104 (01)
  • [39] Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions
    Rosta, E
    Klähn, M
    Warshel, A
    JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (06): : 2934 - 2941
  • [40] Efficient multidimensional free energy calculations for ab initio molecular dynamics using classical bias potentials
    VandeVondele, J
    Rothlisberger, U
    JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (12): : 4863 - 4868