共 50 条
Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin
被引:108
|作者:
Tsai, Li-Chu
[1
]
Chen, Chien-Ho
[2
]
Lin, Cheng-Wei
[3
]
Ho, Yi-Cheng
[4
]
Mi, Fwu-Long
[3
,5
,6
]
机构:
[1] Natl Taipei Univ Technol, Inst Organ & Polymer Mat, Taipei 10608, Taiwan
[2] Taipei Med Univ, Sch Med Lab Sci & Biotechnol, Coll Med Sci & Technol, Taipei 11031, Taiwan
[3] Taipei Med Univ, Grad Inst Med Sci, Coll Med, Taipei 11031, Taiwan
[4] Natl Chiayi Univ, Dept Bioagri Sci, Chiayi 60004, Taiwan
[5] Taipei Med Univ, Sch Med, Dept Biochem & Mol Cell Biol, Coll Med, Taipei 11031, Taiwan
[6] Taipei Med Univ, Grad Inst Nanomed & Med Engn, Coll Biomed Engn, Taipei 11031, Taiwan
关键词:
Trimethyl chitosan;
Fucoidan;
Nanoparticles;
Oral delivery;
Insulin;
MOLECULAR-WEIGHT;
IN-VITRO;
ALPHA-AMYLASE;
CO-DELIVERY;
N;
N-TRIMETHYL CHITOSAN;
SARGASSUM-WIGHTII;
GLYCOL CHITOSAN;
SURFACE-CHARGE;
DOXORUBICIN;
ACARBOSE;
D O I:
10.1016/j.ijbiomac.2018.12.182
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Oral administration is a highly attractive approach for the delivery of protein drugs. However, oral protein therapeutics typically exhibit extremely poor bioavailability due to the harsh gastrointestinal (GI) environments and low permeability of protein across the intestinal barrier. Trimethyl chitosan (TMC) shows excellent mucoadhesive and absorption-enhancing properties while fucoidan (FD) has hypoglycemic effects and can prevent diabetes-related complications. Here we report, for the first time, that TMC combined with FD can be developed to a mutlifunctional nanoplatform for enhancing the transepithelial permeation of insulin through the intestinal epithelial cell barrier and inhibiting the a-glucosidase activity. TMC and FD self-assembled into spherical nanoparticles (NPs) for insulin encapsulation. TMC/FD NPs protected insulin against degradation by releasing insulin in a pH-dependent manner in the gastrointestinal tract fluids. The NPs were able to modulate the barrier function of the Caco-2 intestinal epithelial cell monolayer, and enhance paracellular transport of insulin across the intestinal barrier. TMC/FD NPs also showed alpha-glucosidase inhibitory activity, with an inhibition ratio of 33.2% at 2 mg/mL. The superior transepithelial absorption enhancing property of the TMC/FD NPs is expected to combine in the future with the functions of fucoidan against diabetes-related complications for development of advanced mutlifunctional therapeutic platforms for diabetes. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 150
页数:10
相关论文