Evaluation of anomaly-based IDS for mobile devices using machine learning classifiers

被引:54
作者
Damopoulos, Dimitrios [1 ]
Menesidou, Sofia A.
Kambourakis, Georgios
Papadaki, Maria [2 ]
Clarke, Nathan [2 ]
Gritzalis, Stefanos
机构
[1] Univ Aegean, Lab Informat & Commun Syst Secur, Dept Informat & Commun Syst Engn, Info Sec Lab, GR-83200 Karlovassi, Samos, Greece
[2] Univ Plymouth, Ctr Secur Commun & Network Res, Plymouth PL4 8AA, Devon, England
关键词
mobile devices; anomaly-based intrusion detection system; user behaviour; machine learning classifiers; INTRUSION DETECTION; BEHAVIOR;
D O I
10.1002/sec.341
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile devices have evolved and experienced an immense popularity over the last few years. This growth however has exposed mobile devices to an increasing number of security threats. Despite the variety of peripheral protection mechanisms described in the literature, authentication and access control cannot provide integral protection against intrusions. Thus, a need for more intelligent and sophisticated security controls such as intrusion detection systems (IDSs) is necessary. Whilst much work has been devoted to mobile device IDSs, research on anomaly-based or behaviour-based IDS for such devices has been limited leaving several problems unsolved. Motivated by this fact, in this paper, we focus on anomaly-based IDS for modern mobile devices. A dataset consisting of iPhone users data logs has been created, and various classification and validation methods have been evaluated to assess their effectiveness in detecting misuses. Specifically, the experimental procedure includes and cross-evaluates four machine learning algorithms (i.e. Bayesian networks, radial basis function, K-nearest neighbours and random Forest), which classify the behaviour of the end-user in terms of telephone calls, SMS and Web browsing history. In order to detect illegitimate use of service by a potential malware or a thief, the experimental procedure examines the aforementioned services independently as well as in combination in a multimodal fashion. The results are very promising showing the ability of at least one classifier to detect intrusions with a high true positive rate of 99.8%. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 50 条
  • [21] Analysis of anomaly-based intrusion detection techniques for mobile wireless networks
    Liu, Lijun
    Ma, Hongxia
    Liu, Jianqiu
    Li, Zhuowei
    2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 2, 2008, : 827 - 832
  • [22] Learning Mechanisms for Anomaly-Based Intrusion Detection: Updated Review
    El-Alfy, El-Sayed M.
    Al-Utaibi, Khaled A.
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 1273 - 1281
  • [23] Anomaly Prediction Based on Machine Learning for Memory-Constrained Devices
    Kitagawa, Yuto
    Ishigooka, Tasuku
    Azumi, Takuya
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (09) : 1797 - 1807
  • [24] Stream Learning and Anomaly-based Intrusion Detection in the Adversarial Settings
    Viegas, Eduardo
    Santin, Altair
    Abreu, Vilmar
    Oliveira, Luiz S.
    2017 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2017, : 773 - 778
  • [25] Anomaly-Based Network Intrusion Detection Using SVM
    Zhang, Yuan
    Yang, Qinghai
    Lambotharan, Sangarapillai
    Kyriakopoulos, Konstantinos
    Ghafir, Ibrahim
    AsSadhan, Basil
    2019 11TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2019,
  • [26] Anomaly-based error and intrusion detection in tabular data: No DNN outperforms tree-based classifiers
    Zoppi, Tommaso
    Gazzini, Stefano
    Ceccarelli, Andrea
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 160 : 951 - 965
  • [27] Review on Approaches of Federated Modeling in Anomaly-Based Intrusion Detection for IoT Devices
    Isma'ila, Umar Audi
    Danyaro, Kamaluddeen Usman
    Muazu, Aminu Aminu
    Maiwada, Umar Danjuma
    IEEE ACCESS, 2024, 12 : 30941 - 30961
  • [28] Anomaly-based Intrusion Detection using Distributed intelligent systems
    Morel, Benoit
    CRISIS: 2008 THIRD INTERNATIONAL CONFERENCE ON RISKS AND SECURITY OF INTERNET AND SYSTEMS, PROCEEDINGS, 2008, : 37 - 44
  • [29] Toward Credible Evaluation of Anomaly-Based Intrusion-Detection Methods
    Tavallaee, Mahbod
    Stakhanova, Natalia
    Ghorbani, Ali Akbar
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2010, 40 (05): : 516 - 524
  • [30] Anomaly-based Intrusion Detection Using Auto-encoder
    Nguimbous, Yves Nsoga
    Ksantini, Riadh
    Bouhoula, Adel
    2019 27TH INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2019, : 505 - 509