Preparation of pH-Responsive Hydrogels Based on Chondroitin Sulfate/Alginate for Oral Drug Delivery

被引:18
作者
Suhail, Muhammad [1 ]
Ullah, Hamid [1 ]
Quoc Lam Vu [2 ]
Khan, Arshad [3 ]
Tsai, Ming-Jun [4 ,5 ,6 ]
Wu, Pao-Chu [1 ,7 ,8 ]
机构
[1] Kaohsiung Med Univ, Sch Pharm, Kaohsiung 80708, Taiwan
[2] Thai Nguyen Univ Med & Pharm, Dept Clin Pharm, 284 Luong Ngoc Quyen Str, Thai Nguyen City 24000, Vietnam
[3] Islamia Univ Bahawalpur, Fac Pharm, Dept Pharmaceut, Khawaja Fareed Campus,Railway Rd, Bahawalpur 63100, Pakistan
[4] China Med Univ Hosp, Dept Neurol, Taichung 404, Taiwan
[5] China Med Univ, Coll Med, Sch Med, Taichung 404, Taiwan
[6] China Med Univ, An Nan Hosp, Dept Neurol, Tainan 404, Taiwan
[7] Kaohsiung Med Univ Hosp, Dept Med Res, Kaohsiung 80708, Taiwan
[8] Kaohsiung Med Univ, Drug Dev & Value Creat Res Ctr, Kaohsiung 80708, Taiwan
关键词
hydrogels; porosity; swelling; drug release; biodegradation study; IN-VITRO; RELEASE; ALGINATE; CHITOSAN; NANOPARTICLES; ALCOHOL); LOXOPROFEN; MATRICES; TABLETS; SYSTEM;
D O I
10.3390/pharmaceutics14102110
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
This study investigates pH-sensitive hydrogels based on biocompatible, biodegradable polysaccharides and natural polymers such as chondroitin sulfate and alginate in combination with synthetic monomer such as acrylic acid, as controlled drug carriers. Investigations were conducted for chondroitin sulfate/alginate-graft-poly(acrylic acid) hydrogel in various mixing ratios of chondroitin sulfate, alginate and acrylic acid in the presence of ammonium persulfate and N ',N '-Methylene bisacrylamide. Crosslinking and loading of drug were confirmed by Fourier transform infrared spectroscopy. Thermal stability of both polymers was enhanced after crosslinking as indicated by thermogravimetric analysis and differential scanning calorimeter thermogram of developed hydrogel. Similarly, surface morphology was evaluated by scanning electron microscopy, whereas crystallinity of the polymers and developed hydrogel was investigated by powder X-ray diffraction. Furthermore, swelling and drug-release studies were investigated in acidic and basic medium of pH 1.2 and 7.4 at 37 degrees C, respectively. Maximum swelling and drug release were detected at pH 7.4 as compared to pH 1.2. Increased incorporation of hydrogel contents led to an increase in porosity, drug loading, and gel fraction while a reduction in sol fraction was seen. The polymer volume fraction was found to be low at pH 7.4 compared to pH 1.2, indicating a prominent and greater swelling of the prepared hydrogels at pH 7.4. Likewise, a biodegradation study revealed a slow degradation rate of the developed hydrogel. Hence, we can conclude from the results that a fabricated system of hydrogel could be used as a suitable carrier for the controlled delivery of ketorolac tromethamine.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Formulation of pH-responsive carboxymethyl chitosan and alginate beads for the oral delivery of insulin
    Mukhopadhyay, Piyasi
    Sarkar, Kishor
    Soam, Shweta
    Kundu, P. P.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 129 (02) : 835 - 845
  • [22] pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery
    Yang, Ji
    Chen, Jie
    Pan, Dan
    Wan, Ying
    Wang, Zheng
    CARBOHYDRATE POLYMERS, 2013, 92 (01) : 719 - 725
  • [23] pH-Responsive Lignin-Based Nanomicelles for Oral Drug Delivery
    Cheng, Lianghao
    Deng, Bin
    Luo, Weihua
    Nie, Shaofei
    Liu, Xinyi
    Yin, Yanan
    Liu, Shibo
    Wu, Zhiping
    Zhan, Peng
    Zhang, Lin
    Chen, Jienan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (18) : 5249 - 5258
  • [24] Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of hydrophobic therapeutics
    Puranik, Amey S.
    Pao, Ludovic P.
    White, Vanessa M.
    Peppas, Nicholas A.
    EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2016, 108 : 196 - 213
  • [25] Synthesis and Characterization of Novel pH-Responsive Aminated Alginate Derivatives Hydrogels for Tissue Engineering and Drug Delivery
    Khodayar, Shokouh
    Shushizadeh, Mohammad Reza
    Tahanpesar, Elham
    Makhmalzadeh, Behzad Sharif
    Sanaeishoar, Haleh
    CURRENT ORGANIC SYNTHESIS, 2025, 22 (01) : 90 - 100
  • [26] Preparation of chondroitin sulfate and polyvinyl alcohol hydrogels as drug carriers
    Suhail, Muhammad
    Fang, Chih-Wun
    Chiu, I-Hui
    Ullah, Hamid
    Khan, Arshad
    Tsai, Ming-Jun
    Wu, Pao-Chu
    APPLIED SURFACE SCIENCE ADVANCES, 2023, 18
  • [27] Preparation and application of pH-responsive drug delivery systems
    Ding, Haitao
    Tan, Ping
    Fu, Shiqin
    Tian, Xiaohe
    Zhang, Hu
    Ma, Xuelei
    Gu, Zhongwei
    Luo, Kui
    JOURNAL OF CONTROLLED RELEASE, 2022, 348 : 206 - 238
  • [28] Swelling and Viscoelastic Characterisation of pH-Responsive Chitosan Hydrogels for Targeted Drug Delivery
    Jahren, Susannah L.
    Butler, Michael F.
    Adams, Sarah
    Cameron, Ruth E.
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2010, 211 (06) : 644 - 650
  • [29] Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery
    Chen, Nusheng
    Wang, Hui
    Ling, Chen
    Vermerris, Wilfred
    Wang, Bin
    Tong, Zhaohui
    CARBOHYDRATE POLYMERS, 2019, 225
  • [30] Generation of pH-responsive Ca-alginate/polyethylene Oxide Hydrogel Microspheres for Oral Drug Delivery System
    Jung, Ju-Eon
    Song, Yujin
    Kang, Sung-Min
    POLYMER-KOREA, 2023, 47 (05) : 660 - 668