Adaptive Technique for LoRa Communication with LEO Nanosatellite

被引:3
作者
Karunamurthy, Jayakumar Vandavasi [1 ]
Bendoukha, Sidi Ahmed [1 ]
Nikolakakos, Iraklis [1 ]
Ghaoud, Tareg [1 ]
Ebisi, Fahed [1 ]
Alkharrat, Mohammed Riyadh [1 ]
机构
[1] Dubai Elect & Water Author, Res & Dev Ctr, Dubai, U Arab Emirates
来源
2021 IEEE WORKSHOP ON MICROWAVE THEORY AND TECHNIQUES IN WIRELESS COMMUNICATIONS, MTTW'21 | 2021年
关键词
LoRa Protocol; IoT; LEO Satellite; Nanosatellite; Data frame; Remote monitoring; Electrical sub-station; Monitoring; LoRa node; INTERNET;
D O I
10.1109/MTTW53539.2021.9607055
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an effective method of IoT solution using nanosatellite communication for remote monitoring of electrical substations. The method deploys a smart IoT LoRa terminal called a node. It records the collected data from sensors and transmits it using LoRa (Long Range) adaptive data packets to the LEO (Low Earth Orbit) satellite at specific time intervals depending on the satellite time of visibility and access duration. The implementation of the LoRa Technology in this application allows peer to peer communication between the nodes and the nanosatellite. However, there are some limitations with LoRa and LEO satellite communication. The solution to these limitations has been demonstrated using modelling and simulation methodology. The proposed method improves the IoT-based nanosatellite remote monitoring of electrical sub-stations by mitigating the impact of the limitations. Furthermore, the study shows the nanosatellite view in 2D, 3D, and the target substation's access time by varying its altitude, azimuth, and elevation angles.
引用
收藏
页码:182 / 187
页数:6
相关论文
共 24 条
[1]  
Bor M.C., 2016, P 19 ACM INT C MODEL, P59, DOI DOI 10.1145/2988287.2989163
[2]   Interleaved Chirp Spreading LoRa as a Parallel Network to Enhance LoRa Capacity [J].
Edward, Phoebe ;
El-Aasser, Minar ;
Ashour, Mohamed ;
Elshabrawy, Tallal .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (05) :3864-3874
[3]  
Ezechina M., 2015, Int. J. Eng. Sci., V4, P09
[4]  
Fang X, 2014, 2014 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), P1160, DOI 10.1109/ICInfA.2014.6932824
[5]   EVALUATION OF LORA FOR DATA RETRIEVAL OF OCEAN MONITORING SENSORS WITH LEO SATELLITES [J].
Fernandez, Lara ;
Ruiz-de-Azua, Joan A. ;
Calveras, Anna ;
Camps, Adriano .
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, :359-362
[6]   Assessing LoRa for Satellite-to-Earth Communications Considering the Impact of Ionospheric Scintillation [J].
Fernandez, Lara ;
Ruiz-De-Azua, Joan Adria ;
Calveras, Anna ;
Camps, Adriano .
IEEE ACCESS, 2020, 8 (08) :165570-165582
[7]  
Gupta A.K., 2019, P 2019 4 INT C INTER, P1
[8]  
Ilchenko Mikhail, 2019, 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T). Proceedings, P419, DOI 10.1109/PICST47496.2019.9061350
[9]   An Adaptive Spreading Factor Selection Scheme for a Single Channel LoRa Modem [J].
Kim, Seungku ;
Lee, Heonkook ;
Jeon, Sungho .
SENSORS, 2020, 20 (04)
[10]  
Kumpulainen L, 2011, IEEE PES INNOV SMART