Existence of Surface Waves and Band Gaps in Periodic Heterogeneous Half-spaces

被引:14
作者
Hu, L. X. [1 ]
Liu, L. P. [1 ]
Bhattacharya, K. [2 ]
机构
[1] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
[2] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
关键词
Surface waves; Periodic half-space; Band gaps; RAYLEIGH-WAVES; ELASTIC-WAVES;
D O I
10.1007/s10659-011-9339-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We find a sufficient condition for the existence of surface (Rayleigh) waves based on the Rayleigh-Ritz variational method. When specialized to a homogeneous half-space, the sufficient condition recovers the known criterion for the existence of subsonic surface waves. A simple existence criterion in terms of material properties is obtained for periodic half-spaces of general anisotropic materials. Further, we numerically compute the dispersion relation of the surface waves for a half-space of periodic laminates of two materials and demonstrate the existence of surface wave band gaps.
引用
收藏
页码:65 / 79
页数:15
相关论文
共 33 条
[1]   Bloch wave homogenization and spectral asymptotic analysis [J].
Allaire, G ;
Conca, C .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (02) :153-208
[2]  
[Anonymous], 2009, Theory of Elasticity
[3]  
[Anonymous], PMM J APPL MATH MECH
[4]  
[Anonymous], PHYS ACOUSTICS
[5]  
[Anonymous], SPECTRAL THEORY DIFF
[6]  
[Anonymous], OPERATOR METHOD QUAN
[7]   FREE-SURFACE (RAYLEIGH) WAVES IN ANISOTROPIC ELASTIC HALF-SPACES - THE SURFACE IMPEDANCE METHOD [J].
BARNETT, DM ;
LOTHE, J .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 402 (1822) :135-152
[8]   ELASTIC SURFACE-WAVES IN ANISOTROPIC CRYSTALS - SIMPLIFIED METHOD FOR CALCULATING RAYLEIGH VELOCITIES USING DISLOCATION THEORY [J].
BARNETT, DM ;
LOTHE, J ;
NISHIOKA, K ;
ASARO, RJ .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1973, 3 (06) :1083-1096
[9]   Evidence for complete surface wave band gap in a piezoelectric phononic crystal [J].
Benchabane, S. ;
Khelif, A. ;
Rauch, J. -Y. ;
Robert, L. ;
Laude, V. .
PHYSICAL REVIEW E, 2006, 73 (06)
[10]   GUIDED-WAVES BY ELECTROMAGNETIC GRATINGS AND NONUNIQUENESS EXAMPLES FOR THE DIFFRACTION PROBLEM [J].
BONNETBENDHIA, AS ;
STARLING, F .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1994, 17 (05) :305-338