Maximal PSL2 Subgroups of Exceptional Groups of Lie Type

被引:3
|
作者
Craven, David A.
机构
[1] The School of Mathematics, University of Birmingham, Birmingham
关键词
Maximal subgroups; exceptional groups; finite simple groups; UNIPOTENT ELEMENTS; FINITE SUBGROUPS; TENSOR-PRODUCTS; LARGE RANK; MODULES;
D O I
10.1090/memo/1355
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study embeddings of PSL2(p(a)) into exceptional groups G(p(b)) for G = F-4, E-6, E-2(6), E-7, and p a prime with a, b positive integers. With a few possible exceptions, we prove that any almost simple group with socle PSL2(p(a)), that is maximal inside an almost simple exceptional group of Lie type F-4, E-6, E-2(6) and E-7, is the fixed points under the Frobenius map of a corresponding maximal closed subgroup of type A(1) inside the algebraic group. Together with a recent result of Burness and Testerman for p the Coxeter number plus one, this proves that all maximal subgroups with socle PSL2(p(a)) inside these finite almost simple groups are known, with three possible exceptions (p(a) = 7, 8, 25 for E-7). In the three remaining cases we provide considerable information about a po-tential maximal subgroup.
引用
收藏
页码:I / +
页数:161
相关论文
共 50 条
  • [21] Generation and random generation: From simple groups to maximal subgroups
    Burness, Timothy C.
    Liebeck, Martin W.
    Shalev, Aner
    ADVANCES IN MATHEMATICS, 2013, 248 : 59 - 95
  • [22] Reducible subgroups of exceptional algebraic groups
    Litterick, Alastair J.
    Thomas, Adam R.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (06) : 2489 - 2529
  • [23] Reductive subgroups of exceptional algebraic groups
    Liebeck, MW
    Seitz, GM
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 121 (580) : R6 - &
  • [24] Free subgroups in maximal subgroups of skew linear groups
    Bui Xuan Hai
    Huynh Viet Khanh
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (03) : 603 - 614
  • [25] On non-surjective word maps on PSL2(Fq)
    Biswas, Arindam
    Saha, Jyoti Prakash
    ARCHIV DER MATHEMATIK, 2024, 122 (01) : 1 - 11
  • [26] Maximal subgroups of groups of intermediate growth
    Francoeur, Dominik
    Garrido, Alejandra
    ADVANCES IN MATHEMATICS, 2018, 340 : 1067 - 1107
  • [27] ON MAXIMAL SUBGROUPS OF THE ALTERNATING AND SYMMETRIC GROUPS
    Colombo, V.
    ISCHIA GROUP THEORY 2010, 2012, : 69 - 86
  • [28] Maximal subgroups and PST-groups
    Ballester-Bolinches, Adolfo
    Beidleman, James C.
    Esteban-Romero, Ramon
    Perez-Calabuig, Vicent
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (06): : 1078 - 1082
  • [29] A1 subgroups of exceptional algebraic groups
    Lawther, R
    Testerman, DM
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 141 (674) : 1 - +
  • [30] OVERGROUPS OF SUBSYSTEM SUBGROUPS IN EXCEPTIONAL GROUPS: A 2A1-PROOF
    Gvozdevsky, P.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2021, 32 (06) : 1011 - 1031