Maximal PSL2 Subgroups of Exceptional Groups of Lie Type

被引:3
|
作者
Craven, David A.
机构
[1] The School of Mathematics, University of Birmingham, Birmingham
关键词
Maximal subgroups; exceptional groups; finite simple groups; UNIPOTENT ELEMENTS; FINITE SUBGROUPS; TENSOR-PRODUCTS; LARGE RANK; MODULES;
D O I
10.1090/memo/1355
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study embeddings of PSL2(p(a)) into exceptional groups G(p(b)) for G = F-4, E-6, E-2(6), E-7, and p a prime with a, b positive integers. With a few possible exceptions, we prove that any almost simple group with socle PSL2(p(a)), that is maximal inside an almost simple exceptional group of Lie type F-4, E-6, E-2(6) and E-7, is the fixed points under the Frobenius map of a corresponding maximal closed subgroup of type A(1) inside the algebraic group. Together with a recent result of Burness and Testerman for p the Coxeter number plus one, this proves that all maximal subgroups with socle PSL2(p(a)) inside these finite almost simple groups are known, with three possible exceptions (p(a) = 7, 8, 25 for E-7). In the three remaining cases we provide considerable information about a po-tential maximal subgroup.
引用
收藏
页码:I / +
页数:161
相关论文
共 50 条
  • [11] Groups of Lie type as products of SL2 subgroups
    Liebeck, Martin W.
    Nikolov, Nikolay
    Shalev, Aner
    JOURNAL OF ALGEBRA, 2011, 326 (01) : 201 - 207
  • [12] On the involution fixity of exceptional groups of Lie type
    Burness, Timothy C.
    Thomas, Adam R.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2018, 28 (03) : 411 - 466
  • [13] An Ennola duality for subgroups of groups of Lie type
    Craven, David A.
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (04): : 785 - 799
  • [14] An Ennola duality for subgroups of groups of Lie type
    David A. Craven
    Monatshefte für Mathematik, 2022, 199 : 785 - 799
  • [15] Rigid braid orbits related to PSL2 (P2) and some simple groups
    Shiina, T
    TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (02) : 271 - 282
  • [16] SUBEXTENSIONS FOR A PERMUTATION PSL2(q)-MODULE
    Zavarnitsine, Andrei, V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 551 - 557
  • [17] Designs and codes from PSL2(q)
    Moori, J.
    GROUP THEORY, COMBINATORICS, AND COMPUTING, 2014, 611 : 137 - 149
  • [18] On 2-maximal subgroups of finite groups
    Konovalova, Marina N.
    Monakhov, Victor S.
    Sokhor, Irina L.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (01) : 96 - 103
  • [19] Exceptional groups of Lie type and flag-transitive triplanes
    Zhou ShengLin
    Dong HuiLi
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (02) : 447 - 456
  • [20] ALMOST RECOGNIZABILITY BY SPECTRUM OF SIMPLE EXCEPTIONAL GROUPS OF LIE TYPE
    Vasil'ev, A. V.
    Staroletov, A. M.
    ALGEBRA AND LOGIC, 2015, 53 (06) : 433 - 449