Methods and Technologies of Automated Learning for Improvement of Autonomous Robots Adaptivity

被引:0
作者
Man'ko, S., V [1 ]
Lokhin, V. M. [1 ]
Romanov, M. P. [1 ]
Romanov, A. M. [1 ]
Stashkevich, M. A. [1 ]
Panin, A. S. [1 ]
机构
[1] Moscow State Univ Informat Technol Radio Engn & E, MIREA, Moscow, Russia
来源
PROCEEDINGS OF THE 2016 IEEE NORTH WEST RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (ELCONRUSNW) | 2016年
关键词
self-learning; neural networks; robotics; evolutionary classification forest; autonomous robots;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper discusses a problem of automated learning based on analysis of a sensor array data, accumulated during the autonomous robot life-cycle, and a generalized experience of the robot operation results in different situations. The solution based on complex application of classification tree methods, evolution and neural-network algorithms is introduced.
引用
收藏
页码:277 / 282
页数:6
相关论文
共 6 条
  • [1] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [2] Lokhin V.M., 2015, MECHATRONICS AUTOMAT
  • [3] Manko S.V., 2015, HERALD MSTU MIREA, V3, P192
  • [4] Rokach L., 2008, Series in machine perception and artificial intelligence, DOI 10.1142/9097
  • [5] Stentz A., 1995, P INT JOINT C ART IN, V95, P1652
  • [6] Vorotnikov S.A., 2005, INFORM TECHNOLOGY RO