Carbon Nanotube Based Schottky Diodes as Uncooled Terahertz Radiation Detectors

被引:12
作者
Fedorov, Georgy [1 ]
Gayduchenko, Igor [2 ]
Titova, Nadezhda [2 ]
Gazaliev, Arsen [2 ]
Moskotin, Maxim [2 ]
Kaurova, Natalia [2 ]
Voronov, Boris [2 ]
Goltsman, Gregory [2 ,3 ]
机构
[1] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[2] Moscow State Pedag Univ, Dept Phys, Moscow 119991, Russia
[3] Natl Res Univ Higher Sch Econ, Moscow Inst Elect & Math, Moscow 109028, Russia
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2018年 / 255卷 / 01期
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
carbon nanotubes; Schottky diodes; terahertz radiation detectors;
D O I
10.1002/pssb.201700227
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Despite the intensive development of the terahertz technologies in the last decade, there is still a shortage of efficient room-temperature radiation detectors. Carbon nanotubes (CNTs) are considered as a very promising material possessing many of the features peculiar for graphene (suppression of backscattering, high mobility, etc.) combined with a bandgap in the carrier spectrum. In this paper, we investigate the possibility to incorporate individual CNTs into devices that are similar to Schottky diodes. The latter is currently used to detect radiation with a frequency up to 50 GHz. We report results obtained with semiconducting (bandgap of about 0.5 eV) and quasi-metallic (bandgap of few meV) single-walled carbon nanotubes (SWNTs). Semiconducting CNTs show better performance up to 300 GHz with responsivity up to 100 VW-1, while quasi-metallic CNTs are shown to operate up to 2.5 THz.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Pt/GaN based Schottky diodes for gas sensing applications
    Ali, M
    Cimalla, V
    Ambacher, O
    Tilak, V
    Sandvik, P
    Merfeld, D
    PROCEEDINGS OF THE IEEE SENSORS 2004, VOLS 1-3, 2004, : 959 - 962
  • [42] InSe Schottky Diodes Based on Van Der Waals Contacts
    Zhao, Qinghua
    Jie, Wanqi
    Wang, Tao
    Castellanos-Gomez, Andres
    Frisenda, Riccardo
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (24)
  • [43] Giant Negative Terahertz Photoconductivity in Controllably Doped Carbon Nanotube Networks
    Burdanova, Maria G.
    Tsapenko, Alexey P.
    Satco, Dania A.
    Kashtiban, Reza
    Mosley, Connor D. W.
    Monti, Maurizio
    Staniforth, Michael
    Sloan, Jeremy
    Gladush, Yuriy G.
    Nasibulin, Albert G.
    Lloyd-Hughes, James
    ACS PHOTONICS, 2019, 6 (04) : 1058 - 1066
  • [44] Antenna resonances in terahertz photoconductivity of single wall carbon nanotube fibers
    Shuba, M. V.
    Seliuta, D.
    Kuzhir, P. P.
    Maksimenko, S. A.
    Ksenevich, V. K.
    Kasalynas, I.
    Macutkevic, J.
    Valusis, G.
    DIAMOND AND RELATED MATERIALS, 2012, 27-28 : 36 - 39
  • [45] Ultrahigh-Sensitivity Molecular Sensing with Carbon Nanotube Terahertz Metamaterials
    Wang, Ruiqian
    Xu, Wendao
    Chen, Dinghao
    Zhou, Ruiyun
    Wang, Qi
    Gao, Weilu
    Kono, Junichiro
    Xie, Lijuan
    Ying, Yibin
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (36) : 40629 - 40634
  • [46] Role of hybridization on the Schottky barrier height of carbon nanotube field effect transistors
    Casterman, D.
    De Souza, M. M.
    Tahraoui, A.
    Durkan, C.
    Milne, W. I.
    PHYSICAL REVIEW B, 2009, 79 (12)
  • [47] Characterization of the junction capacitance of metal-semiconductor carbon nanotube Schottky contacts
    Tseng, Yu-Chih
    Bokor, Jeffrey
    APPLIED PHYSICS LETTERS, 2010, 96 (01)
  • [48] Performance analyses of Schottky diodes with Au/Pd contacts on n-ZnO thin films as UV detectors
    Varma, Tarun
    Periasamy, C.
    Boolchandani, Dharmendar
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 112 : 151 - 163
  • [49] Ultrathin K/p-Si(001) Schottky diodes as detectors of chemically generated hot charge carriers
    Huba, K.
    Krix, D.
    Meier, C.
    Nienhaus, H.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2009, 27 (04): : 889 - 894
  • [50] Experimental study of microwave radiation of carbon nanotube arrays
    Zhu, Qi
    Liu, Weifeng
    Zhang, Hualiang
    Xin, Hao
    APPLIED PHYSICS LETTERS, 2009, 95 (08)