Carbon Nanotube Based Schottky Diodes as Uncooled Terahertz Radiation Detectors

被引:12
作者
Fedorov, Georgy [1 ]
Gayduchenko, Igor [2 ]
Titova, Nadezhda [2 ]
Gazaliev, Arsen [2 ]
Moskotin, Maxim [2 ]
Kaurova, Natalia [2 ]
Voronov, Boris [2 ]
Goltsman, Gregory [2 ,3 ]
机构
[1] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[2] Moscow State Pedag Univ, Dept Phys, Moscow 119991, Russia
[3] Natl Res Univ Higher Sch Econ, Moscow Inst Elect & Math, Moscow 109028, Russia
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2018年 / 255卷 / 01期
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
carbon nanotubes; Schottky diodes; terahertz radiation detectors;
D O I
10.1002/pssb.201700227
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Despite the intensive development of the terahertz technologies in the last decade, there is still a shortage of efficient room-temperature radiation detectors. Carbon nanotubes (CNTs) are considered as a very promising material possessing many of the features peculiar for graphene (suppression of backscattering, high mobility, etc.) combined with a bandgap in the carrier spectrum. In this paper, we investigate the possibility to incorporate individual CNTs into devices that are similar to Schottky diodes. The latter is currently used to detect radiation with a frequency up to 50 GHz. We report results obtained with semiconducting (bandgap of about 0.5 eV) and quasi-metallic (bandgap of few meV) single-walled carbon nanotubes (SWNTs). Semiconducting CNTs show better performance up to 300 GHz with responsivity up to 100 VW-1, while quasi-metallic CNTs are shown to operate up to 2.5 THz.
引用
收藏
页数:6
相关论文
共 23 条
[1]   The Influence of Substrate in Determining the Band Gap of Metallic Carbon Nanotubes [J].
Amer, Moh R. ;
Bushmaker, Adam ;
Cronin, Stephen B. .
NANO LETTERS, 2012, 12 (09) :4843-4847
[2]   Carbon-nanotube photonics and optoelectronics [J].
Avouris, Phaedon ;
Freitag, Marcus ;
Perebeinos, Vasili .
NATURE PHOTONICS, 2008, 2 (06) :341-350
[3]  
Cai X, 2014, NAT NANOTECHNOL, V9, P814, DOI [10.1038/nnano.2014.182, 10.1038/NNANO.2014.182]
[4]   OBSERVATION OF ANDERSON LOCALIZATION IN AN ELECTRON GAS [J].
CUTLER, M ;
MOTT, NF .
PHYSICAL REVIEW, 1969, 181 (03) :1336-&
[5]   Mott Insulating State in Ultraclean Carbon Nanotubes [J].
Deshpande, Vikram V. ;
Chandra, Bhupesh ;
Caldwell, Robert ;
Novikov, Dmitry S. ;
Hone, James ;
Bockrath, Marc .
SCIENCE, 2009, 323 (5910) :106-110
[6]   Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation [J].
Fedorov, G. ;
Kardakova, A. ;
Gayduchenko, I. ;
Charayev, I. ;
Voronov, B. M. ;
Finkel, M. ;
Klapwijk, T. M. ;
Morozov, S. ;
Presniakov, M. ;
Bobrinetskiy, I. ;
Ibragimov, R. ;
Goltsman, G. .
APPLIED PHYSICS LETTERS, 2013, 103 (18)
[7]   Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection [J].
Fedorov, G. E. ;
Stepanova, T. S. ;
Gazaliev, A. Sh ;
Gaiduchenko, I. A. ;
Kaurova, N. S. ;
Voronov, B. M. ;
Goltzman, G. N. .
SEMICONDUCTORS, 2016, 50 (12) :1600-1603
[8]   Terahertz detection in single wall carbon nanotubes [J].
Fu, K. ;
Zannoni, R. ;
Chan, C. ;
Adams, S. H. ;
Nicholson, J. ;
Polizzi, E. ;
Yngvesson, K. S. .
APPLIED PHYSICS LETTERS, 2008, 92 (03)
[9]   Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation [J].
Gayduchenko, I. ;
Kardakova, A. ;
Fedorov, G. ;
Voronov, B. ;
Finkel, M. ;
Jimenez, D. ;
Morozov, S. ;
Presniakov, M. ;
Goltsman, G. .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (19)
[10]   Asymmetric devices based on carbon nanotubes as detectors of sub-THz radiation [J].
Gayduchenko, I. A. ;
Fedorov, G. E. ;
Stepanova, T. S. ;
Titova, N. ;
Voronov, B. M. ;
But, D. ;
Coquillat, D. ;
Diakonova, N. ;
Knap, W. ;
Goltsman, G. N. .
3RD INTERNATIONAL SCHOOL AND CONFERENCE ON OPTOELECTRONICS, PHOTONICS, ENGINEERING AND NANOSTRUCTURES (SAINT PETERSBURG OPEN 2016), 2016, 741