Improvement of SOC Estimation of Lithium Ion Batteries Considering Sensor Signal Error

被引:2
|
作者
Huang, Yuan [1 ]
Wang, Xueyuan [1 ]
Dai, Haifeng [1 ]
Wei, Xuezhe [1 ]
机构
[1] Tongji Univ, Sch Automot Studies, Shanghai, Peoples R China
来源
2019 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC) | 2019年
基金
中国国家自然科学基金;
关键词
state of charge; signal error pattern; neural network; CHARGE ESTIMATION; STATE;
D O I
10.1109/vppc46532.2019.8952207
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The state-of-charge estimation of lithium-ion battery is affected by sensor signals. In this paper, neural networks are used to judge the error pattern, and the state update process of the extended Kalman filter method is improved using the judgement. The results show that for the recognition of voltage signal error, the neural networks used have a good effect, with validation accuracy of more than 70% Through the method proposed in this paper, the maximum estimation error of the state of charge is reduced by about 1% under the designed voltage signal error.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Simply designed and universal sliding mode observer for the SOC estimation of lithium-ion batteries
    Chen, Qiaoyan
    Jiang, Jiuchun
    Ruan, Haijun
    Zhang, Caiping
    IET POWER ELECTRONICS, 2017, 10 (06) : 697 - 705
  • [22] SOC estimation of lithium-ion batteries for electric vehicles based on multimode ensemble SVR
    Tian, Huixin
    Li, Ang
    Li, Xiaoyu
    JOURNAL OF POWER ELECTRONICS, 2021, 21 (09) : 1365 - 1373
  • [23] Enhanced strain assistance for SOC estimation of lithium-ion batteries using FBG sensors
    Sheng, Wenjuan
    Wang, Junkai
    Peng, G. D.
    APPLIED ENERGY, 2025, 383
  • [24] Lithium-ion batteries SoC estimation using an ANFIS-based adaptive sliding mode observer for electric vehicle applications infrastructures
    Liu, Weize
    Huo, Zhiyi
    Luo, Xinwen
    INTERNATIONAL JOURNAL OF CRITICAL INFRASTRUCTURES, 2024, 20 (06) : 538 - 556
  • [25] A novel data-driven IBA-ELM model for SOH / SOC estimation of lithium-ion batteries
    Ge, Dongdong
    Jin, Guiyang
    Wang, Jianqiang
    Zhang, Zhendong
    ENERGY, 2024, 305
  • [26] SOC Estimation Methods for Lithium-Ion Batteries without Current Monitoring
    Zhang, Zhaowei
    Shao, Junya
    Li, Junfu
    Wang, Yaxuan
    Wang, Zhenbo
    BATTERIES-BASEL, 2023, 9 (09):
  • [27] SoC Estimation in Lithium-Ion Batteries with Noisy Measurements and Absence of Excitation
    Marti-Florences, Miquel
    Cecilia, Andreu
    Clemente, Alejandro
    Costa-Castello, Ramon
    BATTERIES-BASEL, 2023, 9 (12):
  • [28] An Overview of Online Implementable SOC Estimation Methods for Lithium-ion Batteries
    Meng, Jinhao
    Ricco, Mattia
    Luo, Guangzhao
    Swierczynski, Maciej
    Stroe, Daniel-Ioan
    Stroe, Ana-Irina
    Teodorescu, Remus
    2017 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM) & 2017 INTL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP), 2017, : 573 - 580
  • [29] A Generalized SOC-OCV Model for Lithium-Ion Batteries and the SOC Estimation for LNMCO Battery
    Zhang, Caiping
    Jiang, Jiuchun
    Zhang, Linjing
    Liu, Sijia
    Wang, Leyi
    Loh, Poh Chiang
    ENERGIES, 2016, 9 (11)
  • [30] Fractional-order modeling and SOC estimation of lithium-ion battery considering capacity loss
    Li, Shuxian
    Hu, Minghui
    Li, Yunxiao
    Gong, Changchao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (01) : 417 - 429