CleanEMG - Power line interference estimation in sEMG using an adaptive least squares algorithm

被引:0
|
作者
Fraser, G. D. [1 ]
Chan, A. D. C. [1 ]
Green, J. R. [1 ]
Abser, N. [2 ]
MacIsaac, D. [2 ]
机构
[1] Carleton Univ, Dept Syst & Comp Engn, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada
[2] Univ New Brunswick, Dept Elect & Comp Engn, Fredericton, NB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ELECTROMYOGRAM;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents an adaptive least squares algorithm for estimating the power line interference in surface electromyography (sEMG) signals. The algorithm estimates the power line interference, without the need for a reference input. Power line interference can be removed by subtracting the estimate from the original sEMG signal. The algorithm is evaluated with simulated sEMG based on its ability to accurately estimate power line interference at different frequencies and at various signal-to-noise ratios. Power line estimates produced by the algorithm are accurate for signal-to-noise ratios below 15 dB (SNR estimation error at 15 dB is 14.7995 dB +/- 1.6547 dB).
引用
收藏
页码:7941 / 7944
页数:4
相关论文
共 50 条
  • [21] An iterative algorithm for total least squares estimation
    Lu, Tieding
    Zhou, Shijian
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2010, 35 (11): : 1351 - 1354
  • [22] Efficient global motion estimation algorithm using recursive least squares
    Huang, Yong-Ren
    Kuo, Chung-Ming
    Kuo, Ching-Liue
    OPTICAL ENGINEERING, 2006, 45 (05)
  • [23] Lightning Impulse Parameter Estimation Using Nonlinear Least Squares Algorithm
    Al Saaideh, Mohammad, I
    Feilat, Eyad A.
    Abu-Al-Nadi, Dia, I
    Al-Hinai, Amer S.
    2019 IEEE JORDAN INTERNATIONAL JOINT CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY (JEEIT), 2019, : 97 - 102
  • [24] Estimation of Lower Limb Periodic Motions from sEMG Using Least Squares Support Vector Regression
    Q. L. Li
    Y. Song
    Z. G. Hou
    Neural Processing Letters, 2015, 41 : 371 - 388
  • [25] A novel algorithm for on-line inertia identification via Adaptive Recursive Least Squares
    Liu, Zirui
    Yang, Ming
    Xu, Dianguo
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 2973 - 2978
  • [26] Training ANFIS Using the Enhanced Bees Algorithm and Least Squares Estimation
    Marzi, Hosein
    Darwish, Ahmed Haj
    Helfawi, Humam
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2017, 23 (02): : 227 - 234
  • [27] Adaptive line enhancers on the basis of least-squares algorithm for a single sinusoid detection
    Matsuura, K
    Watanabe, E
    Nishihara, A
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (08) : 1536 - 1543
  • [28] Power line interference rejection from surface electromyography signal using an adaptive algorithm
    Yacoub, S.
    Raoof, K.
    IRBM, 2008, 29 (04) : 231 - 238
  • [29] PASSIVE LEAST-SQUARES-TYPE ESTIMATION ALGORITHM FOR DIRECT ADAPTIVE-CONTROL
    BROGLIATO, B
    LOZANO, R
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 1992, 6 (01) : 35 - 44
  • [30] Improved model-free adaptive control method using recursive least-squares estimation algorithm
    University of Duisburg-Essen, Department of Dynamics and Control, Duisburg
    47057, Germany
    Eur. Control Conf. , ECC, (47-52):