On the commutator subgroup of a right-angled Artin group

被引:5
作者
Panov, Taras [1 ,2 ,3 ]
Veryovkin, Yakov [4 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Math & Mech, Moscow 119991, Russia
[2] Inst Theoret & Expt Phys, Moscow, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[4] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Right-angled Artin group; Commutator subgroup; Polyhedral product; ALGEBRAS;
D O I
10.1016/j.jalgebra.2018.11.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use polyhedral product models to analyse the structure of the commutator subgroup of a right-angled Artin group. In particular, we provide a minimal set of generators for the commutator subgroup, consisting of special iterated commutators of canonical generators. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:284 / 298
页数:15
相关论文
共 13 条
[1]   The polyhedral product functor: A method of decomposition for moment-angle complexes, arrangements and related spaces [J].
Bahri, A. ;
Bendersky, M. ;
Cohen, F. R. ;
Gitler, S. .
ADVANCES IN MATHEMATICS, 2010, 225 (03) :1634-1668
[2]  
Bokut' Leonid A., 1994, MATH APPL, V255
[3]  
Buchstaber V., 2015, Mathematical Surveys and Monographs, V204
[4]   Cohomological rigidity of manifolds defined by 3-dimensional polytopes [J].
Buchstaber, V. M. ;
Erokhovets, N. Yu. ;
Masuda, M. ;
Panov, T. E. ;
Park, S. .
RUSSIAN MATHEMATICAL SURVEYS, 2017, 72 (02) :199-256
[5]  
Buchstaber VM, 2000, RUSS MATH SURV+, V55, P825
[6]  
Hurley T. C., 1996, P ROY IRISH ACAD A, V96, P43
[7]   HOMOLOGY OF CERTAIN ALGEBRAS DEFINED BY GRAPHS [J].
KIM, KH ;
ROUSH, FW .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1980, 17 (02) :179-186
[8]  
Magnus W., 1976, PRESENTATIONS GROUPS
[9]  
Panov T, 2004, PROG MATH, V215, P261
[10]   Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups [J].
Panov, T. E. ;
Veryovkin, Ya. A. .
SBORNIK MATHEMATICS, 2016, 207 (11) :1582-1600