Using Laplace Regression to Model and Predict Percentiles of Age at Death When Age Is the Primary Time Scale

被引:31
作者
Bellavia, Andrea [1 ,2 ]
Discacciati, Andrea [1 ,2 ]
Bottai, Matteo [2 ]
Wolk, Alicja [1 ]
Orsini, Nicola [1 ,2 ]
机构
[1] Karolinska Inst, Inst Environm Med, Unit Nutr Epidemiol, S-17177 Stockholm, Sweden
[2] Karolinska Inst, Inst Environm Med, Unit Biostat, S-17177 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
age; Laplace regression; survival analysis; survival percentiles; time scale; ADJUSTED SURVIVAL CURVES; RATE ADVANCEMENT PERIODS; DOSE-RESPONSE ANALYSIS; UNITED-STATES; FOLLOW-UP; POPULATION; HAZARDS; CHOICE; LIFE; MORTALITY;
D O I
10.1093/aje/kwv033
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Increasingly often in epidemiologic research, associations between survival time and predictors of interest are measured by differences between distribution functions rather than hazard functions. For example, differences in percentiles of survival time, expressed in absolute time units (e.g., weeks), may complement the popular risk ratios, which are unitless measures. When analyzing time to an event of interest (e.g., death) in prospective cohort studies, the time scale can be set to start at birth or at study entry. The advantages of one time origin over the other have been thoroughly explored for the estimation of risks but not for the estimation of survival percentiles. In this paper, we analyze the use of different time scales in the estimation of survival percentiles with Laplace regression. Using this regression method, investigators can estimate percentiles of survival time over levels of an exposure of interest while adjusting for potential confounders. Our findings may help to improve modeling strategies and ease interpretation in the estimation of survival percentiles in prospective cohort studies.
引用
收藏
页码:271 / 277
页数:7
相关论文
共 44 条
[1]   Estimating the loss in expectation of life due to cancer using flexible parametric survival models [J].
Andersson, Therese M-L ;
Dickman, Paul W. ;
Eloranta, Sandra ;
Lambe, Mats ;
Lambert, Paul C. .
STATISTICS IN MEDICINE, 2013, 32 (30) :5286-5300
[2]  
[Anonymous], 2011, Flexible parametric survival analysis using Stata: Beyond the Cox model
[3]   Diseases Attributable to Asbestos Exposure: Years of Potential Life Lost, United States, 1999-2010 [J].
Bang, Ki Moon ;
Mazurek, Jacek M. ;
Wood, John M. ;
Hendricks, Scott A. .
AMERICAN JOURNAL OF INDUSTRIAL MEDICINE, 2014, 57 (01) :38-48
[4]   Adjusted Survival Curves with Multivariable Laplace Regression [J].
Bellavia, Andrea ;
Bottai, Matteo ;
Discacciati, Andrea ;
Orsini, Nicola .
EPIDEMIOLOGY, 2015, 26 (02) :E17-E18
[5]   Alcohol consumption and mortality: a dose-response analysis in terms of time [J].
Bellavia, Andrea ;
Bottai, Matteo ;
Wolk, Alicja ;
Orsini, Nicola .
ANNALS OF EPIDEMIOLOGY, 2014, 24 (04) :291-296
[6]   Sleep Duration and Survival Percentiles Across Categories of Physical Activity [J].
Bellavia, Andrea ;
Akerstedt, Torbjorn ;
Bottai, Matteo ;
Wolk, Alicja ;
Orsini, Nicola .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 179 (04) :484-491
[7]   Fruit and vegetable consumption and all-cause mortality: a dose-response analysis [J].
Bellavia, Andrea ;
Larsson, Susanna C. ;
Bottai, Matte ;
Wolk, Alicia ;
Orsini, Nicola .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2013, 98 (02) :454-459
[8]   QUANTILE REGRESSION-OPPORTUNITIES AND CHALLENGES FROM A USER'S PERSPECTIVE [J].
Beyerlein, Andreas .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 180 (03) :330-331
[9]   A command for Laplace regression [J].
Bottai, Matteo ;
Orsini, Nicola .
STATA JOURNAL, 2013, 13 (02) :302-314
[10]   Laplace regression with censored data [J].
Bottai, Matteo ;
Zhang, Jiajia .
BIOMETRICAL JOURNAL, 2010, 52 (04) :487-503