Estimating phase behavior of the asphaltene precipitation by GA-ANFIS approach

被引:2
作者
Chen, Mengxiang [1 ]
Sasanipour, Jafar [2 ]
Mousavy, Sayyed Ali Kiaian [3 ]
Khajeh, Ebrahim [4 ]
Kamyab, Majid [5 ]
机构
[1] Guangdong Polytech Environm Protect Engn, Dept Mech & Elect Engn, Foshan 528216, Peoples R China
[2] Petr Univ Technol, Ahwaz Fac Petr Engn, Dept Gas Engn, Ahvaz, Iran
[3] Sharif Univ Technol, Dept Comp Engn, Tehran, Iran
[4] Univ Teknol Malaysia, Fac Comp, Skudai, Johor, Malaysia
[5] Iran Univ Sci & Technol, Sch Chem Engn, Comp Aided Proc Engn Lab Cape, Tehran, Iran
关键词
ANFIS; asphaltene; dilution ratio; heavy n-alkane; temperature; SCALING EQUATION; MOLECULAR-WEIGHT; OIL; HYDROCARBONS; TEMPERATURE; PREDICTION; SOLUBILITY; ONSET; GASES;
D O I
10.1080/10916466.2018.1493503
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study implements an adaptive neuro-fuzzy inference system (ANFIS) approach to predict the precipitation amount of the asphaltene using temperature (T), dilution ratio (R-v), and molecular weight of different n-alkanes. Results are then evaluated using graphical and statistical error analysis methods, confirming the model's great ability for appropriate prediction of the precipitation amount. Mean squared error and determination coefficient (R-2) values of 0.036 and 0.995, respectively are obtained for the proposed ANFIS model. Results are then compared to those from previously reported correlations revealing the better performance of the proposed model.
引用
收藏
页码:1582 / 1588
页数:7
相关论文
共 20 条
[1]   Comparison of scaling equation with neural network model for prediction of asphaltene precipitation [J].
Ashoori, S. ;
Abedini, A. ;
Abedini, R. ;
Nasheghi, Kh. Qorbani .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2010, 72 (1-2) :186-194
[2]   On the determination of cetane number of hydrocarbons and oxygenates using Adaptive Neuro Fuzzy Inference System optimized with evolutionary algorithms [J].
Baghban, Alireza ;
Adelizadeh, Mostafa .
FUEL, 2018, 230 :344-354
[3]   Application of LSSVM strategy to estimate asphaltene precipitation during different production processes [J].
Baghban, Alireza ;
Khoshkharam, Ashkan .
PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (22) :1855-1860
[4]   Determination of efficient surfactants in the oil and gas production units using the SVM approach [J].
Baghban, Alireza ;
Bahadori, Alireza .
PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (20) :1691-1697
[5]   Modelling of CO2 separation from gas streams emissions in the oil and gas industries [J].
Baghban, Alireza ;
Bahadori, Mohammad ;
Lee, Moonyong ;
Bahadori, Alireza ;
Kashiwao, Tomoaki .
PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (14) :1291-1299
[6]   Estimation of natural gases water content using adaptive neuro-fuzzy inference system [J].
Baghban, Alireza ;
Kashiwao, Tomoaki ;
Bahadori, Meysam ;
Ahmad, Zainal ;
Bahadori, Alireza .
PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (10) :891-897
[7]   Modelling of gas to hydrate conversion for promoting CO2 capture processes in the oil and gas industry [J].
Baghban, Alireza ;
Bahadori, Mohammad ;
Kashiwao, Tomoaki ;
Bahadori, Alireza .
PETROLEUM SCIENCE AND TECHNOLOGY, 2016, 34 (07) :642-651
[8]   Estimation of air dew point temperature using computational intelligence schemes [J].
Baghban, Alireza ;
Bahadori, Mohammad ;
Rozyn, Jake ;
Lee, Moonyong ;
Abbas, Ali ;
Bahadori, Alireza ;
Rahimali, Arash .
APPLIED THERMAL ENGINEERING, 2016, 93 :1043-1052
[9]   Phase equilibrium modeling of semi-clathrate hydrates of seven commonly gases in the presence of TBAB ionic liquid promoter based on a low parameter connectionist technique [J].
Baghban, Alireza ;
Ahmadi, Mohammad Ali ;
Pouladi, Behzad ;
Amanna, Behnam .
JOURNAL OF SUPERCRITICAL FLUIDS, 2015, 101 :184-192
[10]   Prediction carbon dioxide solubility in presence of various ionic liquids using computational intelligence approaches [J].
Baghban, Alireza ;
Ahmadi, Mohammad Ali ;
Shahraki, Bahram Hashemi .
JOURNAL OF SUPERCRITICAL FLUIDS, 2015, 98 :50-64