Arthritis-associated osteoclastogenic macrophages (AtoMs) participate in pathological bone erosion in rheumatoid arthritis

被引:6
|
作者
Agemura, Tomoya [1 ]
Hasegawa, Tetsuo [1 ]
Yari, Shinya [1 ]
Kikuta, Junichi [1 ,2 ,3 ]
Ishii, Masaru [1 ,2 ,3 ]
机构
[1] Osaka Univ, Grad Sch Med & Frontier Biosci, Dept Immunol & Cell Biol, 2-2 Yamada Oka, Suita, Osaka 5650871, Japan
[2] Osaka Univ, WPI Immunol Frontier Res Ctr, Suita, Osaka, Japan
[3] Natl Inst Biomed Innovat Hlth & Nutr, Lab Bioimaging & Drug Discovery, Ibaraki, Japan
关键词
Rheumatoid arthritis; osteoclast; osteoclast precursor; macrophage; multiphoton microscopy; intravital imaging; T-CELLS; COLLAGEN; PRECURSORS; FOXM1;
D O I
10.1080/25785826.2021.1944547
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Rheumatoid arthritis is a chronic form of arthritis that causes bone destruction in joints such as the knees and fingers. Over the past two decades, the clinical outcomes of rheumatoid arthritis have improved substantially with the development of biological agents and Janus kinase inhibitors. Osteoclasts are myeloid lineage cells with a unique bone-destroying ability that can lead to joint destruction. On the other hand, osteoclasts play an important role in skeletal homeostasis by supporting bone remodeling together with osteoblasts in the bone marrow under steady-state conditions. However, the same osteoclasts are considered to participate in physiological bone remodeling and joint destruction. We found that pathological osteoclasts have different differentiation pathways and regulatory transcription factors compared to physiological osteoclasts. We also identified arthritis-associated osteoclastogenic macrophages (AtoMs), which are common progenitors of pathological osteoclasts in mice and humans that develop specifically in inflamed synovial tissue. This review presents details of the newly identified AtoMs and the original intravital imaging systems that can visualize synovial tissue and pathological osteoclasts at the pannus-bone interface.
引用
收藏
页码:22 / 26
页数:5
相关论文
empty
未找到相关数据