共 50 条
An electrochemical evaluation of nitrogen-doped carbons as anodes for lithium ion batteries
被引:60
|作者:
Gomez-Martin, A.
[1
]
Martinez-Fernandez, J.
[1
]
Ruttert, Mirco
[2
]
Winter, Martin
[2
,3
]
Placke, Tobias
[2
]
Ramirez-Rico, J.
[1
]
机构:
[1] Univ Seville, Inst Ciencia Mat Sevilla, Dept Fis Mat Condensada, CSIC, Avda Reina Mercedes SN, Seville 41012, Spain
[2] Univ Munster, MEET Battery Res Ctr, Inst Phys Chem, Corrensstr 46, D-48149 Munster, Germany
[3] Forschungszentrum Julich, Helmholtz Inst Munster, IEK 12, Corrensstr 46, D-48149 Munster, Germany
来源:
关键词:
HIERARCHICALLY POROUS CARBON;
HIGH-PERFORMANCE ANODE;
GRAPHENE SHEETS;
ELECTRODE MATERIALS;
FUEL-CELLS;
CAPACITY;
NANOSPHERES;
NANOSHEETS;
STORAGE;
PRECURSORS;
D O I:
10.1016/j.carbon.2020.04.003
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
New anode materials beyond graphite are needed to improve the performance of lithium ion batteries (LIBs). Chemical doping with nitrogen has emerged as a simple strategy for enhancing lithium storage in carbon-based anodes. While specific capacity and rate capability are improved by doping, little is known about other key electrochemical properties relevant to practical applications. This work presents a systematic evaluation of electrochemical characteristics of nitrogen-doped carbons derived from a biomass source and urea powder as anodes in LIB half- and full-cells. Results show that doped carbons suffer from a continuous loss in capacity upon cycling that is more severe for higher nitrogen contents. Nitrogen negatively impacts the voltage and energy efficiencies at low charge/discharge current densities. However, as the charge/discharge rate increases, the voltage and energy efficiencies of the doped carbons outperform the non-doped ones. We provide insights towards a fundamental understanding of the requirements needed for practical applications and reveal drawbacks to be overcome by novel doped carbon-based anode materials in LIB applications. With this work, we also want to encourage other researchers to evaluate electrochemical characteristics besides capacity and cycling stability which are mandatory to assess the practicality of novel materials. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:261 / 271
页数:11
相关论文