An electrochemical evaluation of nitrogen-doped carbons as anodes for lithium ion batteries

被引:60
|
作者
Gomez-Martin, A. [1 ]
Martinez-Fernandez, J. [1 ]
Ruttert, Mirco [2 ]
Winter, Martin [2 ,3 ]
Placke, Tobias [2 ]
Ramirez-Rico, J. [1 ]
机构
[1] Univ Seville, Inst Ciencia Mat Sevilla, Dept Fis Mat Condensada, CSIC, Avda Reina Mercedes SN, Seville 41012, Spain
[2] Univ Munster, MEET Battery Res Ctr, Inst Phys Chem, Corrensstr 46, D-48149 Munster, Germany
[3] Forschungszentrum Julich, Helmholtz Inst Munster, IEK 12, Corrensstr 46, D-48149 Munster, Germany
关键词
HIERARCHICALLY POROUS CARBON; HIGH-PERFORMANCE ANODE; GRAPHENE SHEETS; ELECTRODE MATERIALS; FUEL-CELLS; CAPACITY; NANOSPHERES; NANOSHEETS; STORAGE; PRECURSORS;
D O I
10.1016/j.carbon.2020.04.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
New anode materials beyond graphite are needed to improve the performance of lithium ion batteries (LIBs). Chemical doping with nitrogen has emerged as a simple strategy for enhancing lithium storage in carbon-based anodes. While specific capacity and rate capability are improved by doping, little is known about other key electrochemical properties relevant to practical applications. This work presents a systematic evaluation of electrochemical characteristics of nitrogen-doped carbons derived from a biomass source and urea powder as anodes in LIB half- and full-cells. Results show that doped carbons suffer from a continuous loss in capacity upon cycling that is more severe for higher nitrogen contents. Nitrogen negatively impacts the voltage and energy efficiencies at low charge/discharge current densities. However, as the charge/discharge rate increases, the voltage and energy efficiencies of the doped carbons outperform the non-doped ones. We provide insights towards a fundamental understanding of the requirements needed for practical applications and reveal drawbacks to be overcome by novel doped carbon-based anode materials in LIB applications. With this work, we also want to encourage other researchers to evaluate electrochemical characteristics besides capacity and cycling stability which are mandatory to assess the practicality of novel materials. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:261 / 271
页数:11
相关论文
共 50 条
  • [31] The origin of the enhanced performance of nitrogen-doped MoS2 in lithium ion batteries
    Liu, Qiuhong
    Xia Weijun
    Wu, Zhenjun
    Huo, Jia
    Liu, Dongdong
    Wang, Qiang
    Wang, Shuangyin
    NANOTECHNOLOGY, 2016, 27 (17)
  • [32] Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries
    Hu, Chuangang
    Xiao, Ying
    Zhao, Yang
    Chen, Nan
    Zhang, Zhipan
    Cao, Minhua
    Qu, Liangti
    NANOSCALE, 2013, 5 (07) : 2726 - 2733
  • [33] Synthesis and Properties of Nitrogen-Doped Graphene as Anode Materials for Lithium-Ion Batteries
    Fu, Changjing
    Song, Chunlai
    Liu, Lilai
    Xie, Xuedong
    Zhao, Weiling
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (05): : 3876 - 3886
  • [34] Managing voids of Si anodes in lithium ion batteries
    Li, Xianglong
    Zhi, Linjie
    NANOSCALE, 2013, 5 (19) : 8864 - 8873
  • [35] Nitrogen-doped porous carbon microspheres for high-rate anode material in lithium-ion batteries
    Gao, Yang
    Qiu, Xiaotao
    Wang, Xiuli
    Chen, Xianchun
    Gu, Aiqun
    Yu, Zili
    NANOTECHNOLOGY, 2020, 31 (15)
  • [36] Self-templated biomass-derived nitrogen-doped porous carbons as high-performance anodes for sodium ion batteries
    Guo, L.
    An, Y.
    Fei, H.
    Feng, J.
    Xiong, S.
    Ci, L.
    MATERIALS TECHNOLOGY, 2017, 32 (10) : 592 - 597
  • [37] Preparation and properties of SnO2/nitrogen-doped foamed carbon as anode materials for lithium ion batteries
    Wang, Shenggao
    Liu, Danyang
    Yang, Jingjing
    Wang, Geming
    Deng, Quanrong
    IONICS, 2020, 26 (11) : 5333 - 5341
  • [38] Novel Amorphous MoS2/MoO3/Nitrogen-Doped Carbon Composite with Excellent Electrochemical Performance for Lithium Ion Batteries and Sodium Ion Batteries
    Zhu, Kunjie
    Wang, Xiaofeng
    Liu, Jun
    Lo, Site
    Wang, Hao
    Yang, Linyu
    Liu, Sailin
    Xie, Tian
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (09): : 8025 - 8034
  • [39] TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries
    Li, Dan
    Shi, Dongqi
    Liu, Zongwen
    Liu, Huakun
    Guo, Zaiping
    JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (05)
  • [40] Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries
    Chen, Biao
    Meng, Yuhuan
    He, Fang
    Liu, Enzuo
    Shi, Chunsheng
    He, Chunnian
    Ma, Liying
    Li, Qunying
    Li, Jiajun
    Zhao, Naiqin
    NANO ENERGY, 2017, 41 : 154 - 163