Congruence preserving functions on free monoids

被引:3
|
作者
Cegielski, Patrick [1 ]
Grigorieff, Serge [2 ,3 ]
Guessarian, Irene [2 ,3 ,4 ]
机构
[1] Univ Paris Est Creteil, IUT Senart Fontainebleau, EA 4219, LACL, Creteil, France
[2] CNRS, UMR 8243, IRIF, Paris, France
[3] Univ Paris 07, Paris, France
[4] UPMC Univ Paris 6, Paris, France
关键词
congruence preservation; free monoid; affine completeness;
D O I
10.1007/s00012-017-0464-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A function on an algebra is congruence preserving if for any congruence, it maps congruent elements to congruent elements. We show that on a free monoid generated by at least three letters, a function from the free monoid into itself is congruence preserving if and only if it is of the form for some finite sequence of words . We generalize this result to functions of arbitrary arity. This shows that a free monoid with at least three generators is a (noncommutative) affine complete algebra. As far as we know, it is the first (nontrivial) case of a noncommutative affine complete algebra.
引用
收藏
页码:389 / 406
页数:18
相关论文
共 50 条
  • [1] Congruence preserving functions on free monoids
    Patrick Cégielski
    Serge Grigorieff
    Irène Guessarian
    Algebra universalis, 2017, 78 : 389 - 406
  • [2] On monoids of metric preserving functions
    Bilet, Viktoriia
    Dovgoshey, Oleksiy
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2024, 10
  • [3] Rings of congruence preserving functions
    C. J. Maxson
    Frederik Saxinger
    Monatshefte für Mathematik, 2018, 187 : 531 - 542
  • [4] Rings of congruence preserving functions
    Maxson, C. J.
    Saxinger, Frederik
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (03): : 531 - 542
  • [5] Congruence monoids
    Geroldinger, A
    Halter-Koch, F
    ACTA ARITHMETICA, 2004, 112 (03) : 263 - 296
  • [6] Finite generation of congruence preserving functions
    Aichinger, Erhard
    Lazic, Marijana
    Mudrinski, Nebojsa
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (01): : 35 - 62
  • [7] Rings of congruence preserving functions, II
    Maxson, C. J.
    Meyer, J. H.
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (02) : 579 - 589
  • [8] Finite generation of congruence preserving functions
    Erhard Aichinger
    Marijana Lazić
    Nebojša Mudrinski
    Monatshefte für Mathematik, 2016, 181 : 35 - 62
  • [9] Partition Functions as C*-Dynamical Invariants and Actions of Congruence Monoids
    Bruce, Chris
    Laca, Marcelo
    Takeishi, Takuya
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (02) : 1165 - 1203
  • [10] Partition Functions as C*-Dynamical Invariants and Actions of Congruence Monoids
    Chris Bruce
    Marcelo Laca
    Takuya Takeishi
    Communications in Mathematical Physics, 2021, 382 : 1165 - 1203