Insights into incipient soot formation by atomic force microscopy

被引:150
|
作者
Schulz, Fabian [1 ]
Commodo, Mario [2 ]
Kaiser, Katharina [1 ]
De Falco, Gianluigi [3 ]
Minutolo, Patrizia [2 ]
Meyer, Gerhard [1 ]
D'Anna, Andrea [3 ]
Gross, Leo [1 ]
机构
[1] IBM Res Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] CNR, Ist Ric Combust, Ple Tecchio 80, I-80125 Naples, Italy
[3] Univ Napoli Federico II, Dipartimento Ingn Chim Mat & Prod Ind, Ple Tecchio 80, I-80125 Naples, Italy
基金
欧洲研究理事会;
关键词
Incipient soot; Nucleation; Atomic force microscopy; Atomic resolution; Raman spectroscopy; POLYCYCLIC AROMATIC-HYDROCARBONS; DIAMOND-LIKE CARBON; RAMAN-SPECTROSCOPY; PREMIXED FLAMES; NASCENT SOOT; PAH; EVOLUTION; GROWTH; NANOPARTICLES; PARTICLES;
D O I
10.1016/j.proci.2018.06.100
中图分类号
O414.1 [热力学];
学科分类号
摘要
Combustion-generated soot particles can have significant impact on climate, environment and human health. Thus, understanding the processes governing the formation of soot particles in combustion is a topic of ongoing research. In this study, high-resolution atomic force microscopy (AFM) was used for direct imaging of the building blocks forming the particles in the early stages of soot formation. Incipient soot particles were collected right after the particle nucleation zone of a slightly sooting ethylene/air laminar premixed flame at atmospheric pressure and analyzed by AFM after a rapid sublimation procedure. Our data shed light on one of the most complex and still debated aspect on soot formation, i.e., the nucleation process. The molecular constituents of the initial particles have been individually analyzed in detail in their chemical/structural characteristics. Our data demonstrate the large complexity/variety of the aromatic compounds which are the building blocks of the initial soot particles. Nevertheless, some fundamental and specific characteristics have been clearly ascertained. These include a significant presence of penta-rings as opposed to the purely benzenoid aromatic compounds and the noticeable presence of aliphatic side-chains. In addition, there were indications for the presence of persistent r radicals. Incipient soot was also investigated by Raman spectroscopy, the results of which agreed in terms of chemical and structural composition of the particles with those obtained by AFM. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:885 / 892
页数:8
相关论文
共 50 条
  • [41] INVESTIGATION OF NANOPARTICLES BY ATOMIC AND LATERAL FORCE MICROSCOPY
    WURSTER, R
    OCKER, B
    SCANNING, 1993, 15 (03) : 130 - 135
  • [42] PAH formation and soot morphology in flames of C4 fuels
    Schenk, M.
    Hansen, N.
    Vieker, H.
    Beyer, A.
    Goelzhaeuser, A.
    Kohse-Hoeinghaus, K.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2015, 35 : 1761 - 1769
  • [43] Correlative Atomic Force Microscopy and Raman Spectroscopy in Acid Erosion of Dentin
    Doss, Bryant L.
    Konkol, Jakub A.
    Liu, Yangxi
    Brinzari, Tatiana, V
    Pan, Long
    MICROSCOPY AND MICROANALYSIS, 2023, 29 (05) : 1755 - 1763
  • [44] Atomic force microscopy and Raman spectroscopy investigation of additive interactions responsible for anti-wear film formation in a lubricated contact
    Yablon, DG
    Kalamaras, PH
    Deckman, DE
    Webster, MN
    TRIBOLOGY TRANSACTIONS, 2006, 49 (01) : 108 - 116
  • [45] Atomic Force Microscopy of Viruses
    de Pablo, P. J.
    Schaap, I. A. T.
    PHYSICAL VIROLOGY: VIRUS STRUCTURE AND MECHANICS, 2019, 1215 : 159 - 179
  • [46] Nanofabrication with atomic force microscopy
    Tang, Q
    Shi, SQ
    Zhou, LM
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2004, 4 (08) : 948 - 963
  • [47] Atomic force microscopy of gibbsite
    Lloyd, S
    Thurgate, SM
    Cornell, RM
    Parkinson, GM
    APPLIED SURFACE SCIENCE, 1998, 135 (1-4) : 178 - 182
  • [48] Artifacts in Atomic Force Microscopy
    Gainutdinov R.V.
    Arutyunov P.A.
    Russian Microelectronics, 2001, 30 (4) : 219 - 224
  • [49] Quantitative atomic force microscopy
    Soengen, Hagen
    Bechstein, Ralf
    Kuehnle, Angelika
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (27)
  • [50] A study of sulfamerazine single crystals using atomic force microscopy, transmission light microscopy, and Raman spectroscopy
    Cao, XP
    Sun, CQ
    Thamann, TJ
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2005, 94 (09) : 1881 - 1892