On Peano theorem for fuzzy differential equations

被引:17
作者
Choudary, A. D. R. [1 ]
Donchev, T. [1 ]
机构
[1] Abdus Salam Sch Math Sci ASSMS, Lahore, Pakistan
关键词
Fuzzy differential equations; Continuous right-hand side; CAUCHY-PROBLEM;
D O I
10.1016/j.fss.2011.01.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Nieto's theorem states that every fuzzy differential equation with bounded and continuous right-hand side admits a solution. In this paper we show that the provided proof of this result is not correct. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:93 / 94
页数:2
相关论文
共 50 条
[41]   Oscillation property for fuzzy delay differential equations [J].
Guo, Mengshu ;
Peng, Xiyuan ;
Xu, Yaoqun .
FUZZY SETS AND SYSTEMS, 2012, 200 :25-35
[42]   A Note on Asymptotic Equilibrium for Fuzzy Differential Equations [J].
Shao, Yabin ;
Zhang, Shengui ;
Xiao, Yanping .
JOURNAL OF APPLIED MATHEMATICS, 2014,
[43]   Sheaf fuzzy problems for functional differential equations [J].
Phan Van Tri ;
Ngo Van Hoa ;
Nguyen Dinh Phu .
ADVANCES IN DIFFERENCE EQUATIONS, 2014,
[44]   Convergence of numerical methods for fuzzy differential equations [J].
Cheng, Yan ;
You, Cuilian .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (04) :5257-5266
[45]   The Cauchy problem for complex fuzzy differential equations [J].
Karpenko, Daria ;
Van Gorder, Robert A. ;
Kandel, Abraham .
FUZZY SETS AND SYSTEMS, 2014, 245 :18-29
[46]   Global existence of solutions to fuzzy differential equations [J].
Song, SJ ;
Guo, L ;
Feng, CB .
FUZZY SETS AND SYSTEMS, 2000, 115 (03) :371-376
[47]   Basic theorems for fuzzy differential equations in the quotient space of fuzzy numbers [J].
Qiu, Dong ;
Lu, Chongxia ;
Zhang, Wei ;
Zhang, Qinghua ;
Mu, Chunlai .
ADVANCES IN DIFFERENCE EQUATIONS, 2014,
[48]   Runge-Kutta methods for Fuzzy Differential Equations [J].
Palligkinis, S. Ch. ;
Papageorgiou, G. ;
Famelis, I. Th. .
Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B :444-448
[49]   Runge-Kutta methods for fuzzy differential equations [J].
Palligkinis, S. Ch. ;
Papageorgiou, G. ;
Famelis, I. Th. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) :97-105
[50]   Linear first-order fuzzy differential equations [J].
Nieto, Juan J. ;
Rodriguez-Lopez, Rosana ;
Franco, Daniel .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2006, 14 (06) :687-709