On para-Kahler and hyper-para-Kahler Lie algebras

被引:23
作者
Benayadi, Said [1 ]
Boucetta, Mohamed [2 ]
机构
[1] Univ Lorraine, CNRS, Lab IECL, UMR 7502, F-57045 Metz 1, France
[2] Univ Cadi Ayyad, Fac Sci & Tech, Marrakech, Morocco
关键词
Hyper-para-Kahler Lie algebra; Left symmetric algebra; Para-Kahler Lie algebra; S-matrix; Symplectic Lie algebra;
D O I
10.1016/j.jalgebra.2015.04.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we consider Lie algebras that admit para-Kahler and hyper-para-Kahler structures. We provide new characterizations of these Lie algebras and develop many methods for building large classes of examples. Previously, Bai considered para-Kahler Lie algebras as left symmetric bialgebras. We reconsider this viewpoint and make improvements in order to obtain some new results. The study of para-Kahler and hyper-para-Kahler is intimately linked to the study of left symmetric algebras, particularly those that admit invariant symplectic forms. In this study, we provide many new classes of left symmetric algebras and complete descriptions of all the associative algebras that admit an invariant symplectic form. We also describe all four-dimensional hyper-para-Kahler Lie algebras. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:61 / 101
页数:41
相关论文
共 21 条
[1]   Double products and hypersymplectic structures on R4n [J].
Andrada, A ;
Dotti, IG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) :1-16
[2]   Complex product structures on Lie algebras [J].
Andrada, A ;
Salamon, S .
FORUM MATHEMATICUM, 2005, 17 (02) :261-295
[3]   Hypersymplectic Lie algebras [J].
Andrada, Adrian .
JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (10) :2039-2067
[4]   Left-symmetric bialgebras and an analogue of the classical Yang-Baxter equation [J].
Bai, Chengming .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (02) :221-260
[5]   Symplectic structures on quadratic Lie algebras [J].
Bajo, Ignacio ;
Benayadi, Said ;
Medina, Alberto .
JOURNAL OF ALGEBRA, 2007, 316 (01) :174-188
[6]   Abelian para-Kahler structures on Lie algebras [J].
Bajo, Ignacio ;
Benayadi, Said .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (02) :160-173
[7]   KLEINIAN GEOMETRY AND THE N=2 SUPERSTRING [J].
BARRETT, J ;
GIBBONS, GW ;
PERRY, MJ ;
POPE, CN ;
RUBACK, P .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (09) :1457-1493
[8]   Solutions of the Yang-Baxter equations on quadratic Lie groups: The case of oscillator groups [J].
Boucetta, Mohamed ;
Medina, Alberto .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) :2309-2320
[9]  
CHU BY, 1974, T AM MATH SOC, V197, P145
[10]  
Cruceanu V., 1995, QUADERNI I MAT MESSI, V2, P1