MOF-Derived Flower-like MoS2@TiO2 Nanohybrids with Enhanced Activity for Hydrogen Evolution

被引:163
作者
Ma, Bing [1 ]
Guan, Pei-Yao [1 ]
Li, Qiu-Ying [1 ]
Zhang, Mei [1 ]
Zang, Shuang-Quan [1 ]
机构
[1] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
metal-organic frameworks; photo- and electrocatalysis; hydrogen evolution reaction; MoS2@TiO2; flower-like nanohybrids; CHEMICALLY EXFOLIATED MOS2; METAL-ORGANIC FRAMEWORKS; HYBRID NANOSTRUCTURES; LITHIUM STORAGE; FREE SYSTEM; PERFORMANCE; ENERGY; OXYGEN; NANOPARTICLES; NANOSHEETS;
D O I
10.1021/acsami.6b08740
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A simple hydrothermal method is developed for synthesizing crystalline MoS2@TiO2 nanohybrids with metal-organic framework (MOP) as precursor. At an optimal ratio of 14.6 wt % MoS2, the resultant material exhibits prominent catalytic activity for hydrogen evolution reaction (HER) with a high hydrogen production rate of 10 046 mu mol h(-1) g(-1) under visible light illumination with fluorescein as photosensitizer. Furthermore, the synthesized catalyst also possesses an attractive electrocatalytic activity with an onset overpotential of -300 mV (vs RHE) and a Tafel slope of similar to 81 mV dec(-1). The enhanced catalyst performances are mainly attributed to the in situ formed active sites, featuring a uniform dispersion and strong connection of MoS2 and TiO2, which can facilitate electron transfer. In addition, the MoS2@TiO2 nanohybrids are highly stable and completely recyclable over HER.
引用
收藏
页码:26794 / 26800
页数:7
相关论文
共 56 条
[1]   Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS2 [J].
Ambrosi, Adriano ;
Sofer, Zdenek ;
Pumera, Martin .
SMALL, 2015, 11 (05) :605-612
[2]   Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures [J].
Bai, Song ;
Xiong, Yujie .
CHEMICAL COMMUNICATIONS, 2015, 51 (51) :10261-10271
[3]   Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals [J].
Bai, Song ;
Wang, Limin ;
Chen, Xiaoyi ;
Du, Junteng ;
Xiong, Yujie .
NANO RESEARCH, 2015, 8 (01) :175-183
[4]   Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials [J].
Benck, Jesse D. ;
Hellstern, Thomas R. ;
Kibsgaard, Jakob ;
Chakthranont, Pongkarn ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2014, 4 (11) :3957-3971
[5]   Best Practices for Reporting on Heterogeneous Photocatalysis [J].
Buriak, Jillian M. ;
Kamat, Prashant V. ;
Schanze, Kirk S. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (15) :11815-11816
[6]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[7]   TiO2-based solar cells sensitized by chemical-bath-deposited few-layer MoS2 [J].
Du, Tian ;
Wang, Ning ;
Chen, Haijun ;
He, Hongcai ;
Lin, Hong ;
Liu, Kai .
JOURNAL OF POWER SOURCES, 2015, 275 :943-949
[8]   An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction [J].
Fu, Yanghe ;
Sun, Dengrong ;
Chen, Yongjuan ;
Huang, Renkun ;
Ding, Zhengxin ;
Fu, Xianzhi ;
Li, Zhaohui .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (14) :3364-3367
[9]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[10]   The Chemistry and Applications of Metal-Organic Frameworks [J].
Furukawa, Hiroyasu ;
Cordova, Kyle E. ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2013, 341 (6149) :974-+