A dynamical 2-dimensional fuzzy space

被引:9
作者
Buric, M
Madore, J
机构
[1] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia Monteneg
[2] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France
关键词
D O I
10.1016/j.physletb.2005.07.011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The non-commutative extension of a dynamical 2-dimensional space-time is given and some of its properties discussed. Wick rotation to Euclidean signature yields a surface which has as commutative limit the doughnut but in a singular limit in which the radius of the hole tends to zero. (c) 2005 Published by Elsevier B.V.
引用
收藏
页码:183 / 191
页数:9
相关论文
共 15 条
[1]  
BURIC M, 2004, GEOMETRIC METHODS PH
[2]   Geometrical tools for quantum Euclidean spaces [J].
Cerchiai, BL ;
Fiore, G ;
Madore, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 217 (03) :521-554
[3]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[4]   Automorphisms of associative algebras and noncommutative geometry [J].
Dimakis, A ;
Müller-Hoissen, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06) :2307-2330
[5]  
Dimitrijevic M, 2003, EUR PHYS J C, V31, P129, DOI 10.1140/epjc/s2003-01309-y
[6]   On curvature in noncommutative geometry [J].
DuboisViolette, M ;
Madore, J ;
Masson, T ;
Mourad, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (08) :4089-4102
[7]   Solitons and black holes [J].
Gegenberg, J ;
Kunstatter, G .
PHYSICS LETTERS B, 1997, 413 (3-4) :274-280
[8]   Dilaton gravity in two dimensions [J].
Grumiller, D ;
Kummer, W ;
Vassilevich, DV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 369 (04) :327-430
[9]   BLACK-HOLES OF A GENERAL 2-DIMENSIONAL DILATON GRAVITY THEORY [J].
LEMOS, JPS ;
SA, PM .
PHYSICAL REVIEW D, 1994, 49 (06) :2897-2908
[10]   THE FUZZY SPHERE [J].
MADORE, J .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (01) :69-87