ON SOLVING SEMILINEAR SINGULARLY PERTURBED NEUMANN PROBLEMS FOR MULTIPLE SOLUTIONS*

被引:3
|
作者
Xie, Ziqing [1 ]
Yuan, Yongjun [1 ]
Zhou, Jianxin [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, LCSM MOE, Changsha 410081, Hunan, Peoples R China
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2022年 / 44卷 / 01期
关键词
Neumann problem; singularly perturbed; multiple solutions; local minimax method; critical perturbation value; bifurcation; BOUNDARY PEAK SOLUTIONS; SEARCH-EXTENSION METHOD; LEAST-ENERGY SOLUTIONS; LOCAL MINIMAX METHOD; CRITICAL-POINTS; LAYER SOLUTIONS; SADDLE-POINTS; INTERIOR; BIFURCATION; EXISTENCE;
D O I
10.1137/20M1383380
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the analysis of bifurcation points and Morse indices of trivial solutions at any perturbation value for a general semilinear singularly perturbed Neumann boundary value problem, in this paper, the exact critical perturbation value \varepsilon c which determines the existence or nonexistence of nontrivial positive solutions is obtained. As a result, the generating process of nontrivial positive solutions is studied and further used to guide algorithm design and numerical computation. An improved local minimax method is then proposed accordingly to compute both M-type and W-type saddle points by using an adaptive local refinement strategy and a Newton method to overcome singularity difficulty and accelerate local convergence. Extensive numerical results are reported to justify the critical perturbation value \varepsilon c and investigate some interesting solution properties of different types of problems.
引用
收藏
页码:A501 / A523
页数:23
相关论文
共 50 条
  • [1] ON FINDING MULTIPLE SOLUTIONS TO A SINGULARLY PERTURBED NEUMANN PROBLEM
    Xie, Ziqing
    Yuan, Yongjun
    Zhou, Jianxin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01): : A395 - A420
  • [2] Nodal Clustered Solutions for Some Singularly Perturbed Neumann Problems
    D'Aprile, Teresa
    Pistoia, Angela
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (08) : 1355 - 1401
  • [3] Concentration of Solutions for Some Singularly Perturbed Neumann Problems
    Malchiodi, Andrea
    GEOMETRIC ANALYSIS AND PDES, 2009, 1977 : 63 - 115
  • [4] TRIPLE JUNCTION SOLUTIONS FOR A SINGULARLY PERTURBED NEUMANN PROBLEM
    Ao, Weiwei
    Musso, Monica
    Wei, Juncheng
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (06) : 2519 - 2541
  • [5] Concentration of solutions for a singularly perturbed Neumann problem in non-smooth domains
    Dipierro, Serena
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (01): : 107 - 126
  • [6] Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions
    Bonheure, Denis
    Grumiau, Christopher
    Troestler, Christophe
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 : 236 - 273
  • [7] Multiple interior and boundary peak solutions to singularly perturbed nonlinear Neumann problems under the Berestycki-Lions condition
    Lee, Youngae
    Seok, Jinmyoung
    MATHEMATISCHE ANNALEN, 2017, 367 (1-2) : 881 - 928
  • [8] Singularly perturbed Neumann problem for fractional Schrodinger equations
    Chen, Guoyuan
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (04) : 695 - 708
  • [9] Concentration on surfaces for a singularly perturbed Neumann problem in three-dimensional domains
    Guo, Ying
    Yang, Jun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2220 - 2266
  • [10] Multiple solutions with sign information for semilinear Neumann problems with convection
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (01): : 19 - 38