Hepatocellular Carcinoma Detection Using Machine Learning Techniques

被引:6
作者
Angelis, Ioannis [1 ]
Exarchos, Themis [1 ]
机构
[1] Ionian Univ, Dept Informat, Corfu, Greece
来源
GENEDIS 2020: COMPUTATIONAL BIOLOGY AND BIOINFORMATICS | 2021年 / 1338卷
关键词
Hepatocellular carcinoma; Machine learning; Classification;
D O I
10.1007/978-3-030-78775-2_4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hepatocellular carcinoma (HCC) is a form of primary cancer appearing in the liver. In this work used the hepatocellular carcinoma data-set from the UCI machine learning repository and tested different techniques for feature selection and classification. The following algorithms were used: decision trees, random forests, SVMs, k-NN classifiers, AdaBoost, and gradient boost. The best results were obtained using gradient boost with 84% accuracy and 93% precision. Finally, we deployed the model to a web application as a decision support system for clinicians.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 12 条
  • [1] Feature Selection and Instance Selection from Clinical Datasets Using Co-operative Co-evolution and Classification Using Random Forest
    Christo, V. R. Elgin
    Nehemiah, H. Khanna
    Brighty, J.
    Kannan, Arputharaj
    [J]. IETE JOURNAL OF RESEARCH, 2022, 68 (04) : 2508 - 2521
  • [2] El-Serag HB, 2020, LIVER: BIOLOGY AND PATHOBIOLOGY, 6TH EDITION, 6 EDITION, P758
  • [3] Research on collaborative negotiation for e-commerce.
    Feng, YQ
    Lei, Y
    Li, Y
    Cao, RZ
    [J]. 2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 2085 - 2088
  • [4] Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012
    Ferlay, Jacques
    Soerjomataram, Isabelle
    Dikshit, Rajesh
    Eser, Sultan
    Mathers, Colin
    Rebelo, Marise
    Parkin, Donald Maxwell
    Forman, David
    Bray, Freddie
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2015, 136 (05) : E359 - E386
  • [5] Extremely randomized trees
    Geurts, P
    Ernst, D
    Wehenkel, L
    [J]. MACHINE LEARNING, 2006, 63 (01) : 3 - 42
  • [6] Disease-Free Survival after Hepatic Resection in Hepatocellular Carcinoma Patients: A Prediction Approach Using Artificial Neural Network
    Ho, Wen-Hsien
    Lee, King-Teh
    Chen, Hong-Yaw
    Ho, Te-Wei
    Chiu, Herng-Chia
    [J]. PLOS ONE, 2012, 7 (01):
  • [7] A novel machine learning approach for early detection of hepatocellular carcinoma patients
    Ksiazek, Wojciech
    Abdar, Moloud
    Rajendra Acharya, U.
    Plawiak, Pawel
    [J]. COGNITIVE SYSTEMS RESEARCH, 2019, 54 : 116 - 127
  • [8] Liu H, 1995, PROC INT C TOOLS ART, P388, DOI 10.1109/TAI.1995.479783
  • [9] Update in global trends and aetiology of hepatocellular carcinoma
    Rawla, Prashanth
    Sunkara, Tagore
    Muralidharan, Pradhyumna
    Raj, Jeffrey Pradeep
    [J]. WSPOLCZESNA ONKOLOGIA-CONTEMPORARY ONCOLOGY, 2018, 22 (03): : 141 - 150
  • [10] A new cluster-based oversampling method for improving survival prediction of hepatocellular carcinoma patients
    Santos, Miriam Seoane
    Abreu, Pedro Henriques
    Garcia-Laencina, Pedro J.
    Simao, Adelia
    Carvalho, Armando
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2015, 58 : 49 - 59