Modeling adhesion-independent cell migration

被引:3
|
作者
Jankowiak, Gaspard [1 ]
Peurichard, Diane [2 ]
Reversat, Anne [3 ]
Schmeiser, Christian [4 ]
Sixt, Michael [3 ]
机构
[1] RICAM Osterreich Akad Wissensch, Postgasse 6-7, A-1010 Vienna, Austria
[2] Univ Paris 06, INRIA Paris MAMBA, Lab Jacques Louis Lions, 4 Pl Jussieu,Couloir 16-26,3e Etage, F-75252 Paris 05, France
[3] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[4] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
来源
基金
奥地利科学基金会;
关键词
Variational methods; weak solutions; cell motility modeling; cellular cortex; actin polymerization; LOCOMOTION; MOTILITY;
D O I
10.1142/S021820252050013X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-dimensional mathematical model for cells migrating without adhesion capabilities is presented and analyzed. Cells are represented by their cortex, which is modeled as an elastic curve, subject to an internal pressure force. Net polymerization or depolymerization in the cortex is modeled via local addition or removal of material, driving a cortical flow. The model takes the form of a fully nonlinear degenerate parabolic system. An existence analysis is carried out by adapting ideas from the theory of gradient flows. Numerical simulations show that these simple rules can account for the behavior observed in experiments, suggesting a possible mechanical mechanism for adhesion-independent motility.
引用
收藏
页码:513 / 537
页数:25
相关论文
共 50 条
  • [1] Focal Adhesion-Independent Cell Migration
    Paluch, Ewa K.
    Aspalter, Irene M.
    Sixt, Michael
    ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 32, 2016, 32 : 469 - 490
  • [2] Force transmission during adhesion-independent migration
    Bergert, Martin
    Erzberger, Anna
    Desai, Ravi A.
    Aspalter, Irene M.
    Oates, Andrew C.
    Charras, Guillaume
    Salbreux, Guillaume
    Paluch, Ewa K.
    NATURE CELL BIOLOGY, 2015, 17 (04) : 524 - +
  • [3] Force transmission during adhesion-independent migration
    Martin Bergert
    Anna Erzberger
    Ravi A. Desai
    Irene M. Aspalter
    Andrew C. Oates
    Guillaume Charras
    Guillaume Salbreux
    Ewa K. Paluch
    Nature Cell Biology, 2015, 17 : 524 - 529
  • [4] Membrane Flow Drives an Adhesion-Independent Amoeboid Cell Migration Mode
    O'Neill, Patrick R.
    Castillo-Badillo, Jean A.
    Meshik, Xenia
    Kalyanaraman, Vani
    Melgarejo, Krystal
    Gautam, N.
    DEVELOPMENTAL CELL, 2018, 46 (01) : 9 - +
  • [5] An adhesion-independent cell migration mode driven by membrane flow.
    O'Neill, P. R.
    Castillo-Badillo, J. A.
    Meshik, X.
    Kalyanaraman, V.
    Melgarejo, K.
    Gautam, N.
    MOLECULAR BIOLOGY OF THE CELL, 2018, 29 (26)
  • [6] Force transduction during adhesion-independent migration.
    Bergert, M.
    Erzberger, A.
    Desai, R. A.
    Oates, A. C.
    Charras, G.
    Salbreux, G.
    Paluch, E. K.
    MOLECULAR BIOLOGY OF THE CELL, 2014, 25
  • [7] Actin Turnover Required for Adhesion-Independent Bleb Migration
    Copos, Calina
    Strychalski, Wanda
    FLUIDS, 2022, 7 (05)
  • [8] Cell migration by swimming: Drosophila adipocytes as a new in vivo model of adhesion-independent motility
    Martin, Paul
    Wood, Will
    Franz, Anna
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2020, 100 : 160 - 166
  • [9] The Influence of Nucleus Mechanics in Modelling Adhesion-independent Cell Migration in Structured and Confined Environments
    Chiara Giverso
    Gaspard Jankowiak
    Luigi Preziosi
    Christian Schmeiser
    Bulletin of Mathematical Biology, 2023, 85
  • [10] The Influence of Nucleus Mechanics in Modelling Adhesion-independent Cell Migration in Structured and Confined Environments
    Giverso, Chiara
    Jankowiak, Gaspard
    Preziosi, Luigi
    Schmeiser, Christian
    BULLETIN OF MATHEMATICAL BIOLOGY, 2023, 85 (09)