Stabilization in the ZaP flow Z-pinch

被引:2
|
作者
Shumlak, U. [1 ]
Nelson, B. A. [1 ]
Adams, C. S. [1 ]
Chan, B. J. [1 ]
Golingo, R. P. [1 ]
Knecht, S. D. [1 ]
Munson, K. A. [1 ]
Den Hartog, D. J. [1 ]
机构
[1] Univ Washington, Aerosp & Energet Res Program, Seattle, WA 98195 USA
关键词
magnetic confinement; Z-pinch; sheared flow stabilization;
D O I
10.1007/s10894-007-9104-3
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The stabilizing effect of a sheared axial flow is investigated in an axially flowing Z-pinch that is 1 m long with a 1 cm radius. After pinch assembly the plasma is magnetically confined for an extended quiescent period where the magnetic fluctuation levels of the azimuthal modes m = 1, 2, 3 are significantly reduced. Time-resolved Doppler shifts of plasma impurity lines are measured to determine the plasma axial velocity profiles showing a large, but sub-Alfvenic, sheared flow during the quiescent period and low shear profiles during periods of high mode activity. The plasma has a sheared axial flow that exceeds the theoretical threshold for stability during the quiescent period and is lower than the threshold during periods of high mode activity. The sheared flow profile is coincident with a plasma quiescent period where magnetic mode fluctuations are low. The threshold value and plasma lifetime are experimentally adjusted by controlling the plasma density and plasma supply, which is varied by altering the amount of injected neutral gas. Nonlinear simulations of the Z-pinch are performed using Mach2 for a static plasma, a uniform shear, and a shear localized at the pinch radius.
引用
收藏
页码:111 / 114
页数:4
相关论文
共 50 条
  • [31] Compact Z-pinch EUV source for photolithography
    Schriever, G
    Rahe, M
    Stamm, U
    Basting, D
    Khristoforov, O
    Vinokhodov, A
    Borisov, V
    EMERGING LITHOGRAPHIC TECHNOLOGIES V, 2001, 4343 : 615 - 620
  • [32] Spark ignition in an inertially confined Z-pinch
    Linhart, JG
    Bilbao, L
    NUKLEONIKA, 2003, 48 (01) : 13 - 16
  • [33] A heuristic model of the wire array Z-pinch
    Haines, MG
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1998, 26 (04) : 1275 - 1281
  • [34] Progress on Multielement Spectroscopic Temperature and Impurity Studies on a High Flow Velocity Z-Pinch
    Klemmer, Aidan W.
    Fuelling, Stephan
    Bauer, Bruno S.
    Wurden, Glen A.
    Taylor, Andrew S.
    Sutherland, Derek A.
    Hossack, Aaron
    Shumlak, Uri
    Levitt, Ben J.
    Nelson, Brian A.
    Quinley, Morgan
    Weber, Tobin R.
    Smythe, Jared
    Diamond, Bennett
    Parry, Marcus
    Parga, Clemente
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (04) : 1118 - 1128
  • [35] Analysis of Conical Wire Array Z-Pinch Stability with a Center Wire
    Martinez, D.
    Presura, R.
    Wright, S.
    Plechaty, C.
    Neff, S.
    Wanex, L.
    Ampleford, D. J.
    DENSE Z-PINCHES, 2009, 1088 : 121 - +
  • [36] Cable Array Z-Pinch Experiments at 1 MA
    Hoyt, C. L.
    Knapp, P. F.
    Pikuz, S. A.
    Shelkovenko, T. A.
    Cahill, A. D.
    Gourdain, P. -A.
    Greenly, J. B.
    Kusse, B. R.
    Hammer, D. A.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (12) : 3367 - 3371
  • [37] XUV pulses of Al wire at small Z-pinch
    Kubes, P
    Kravánik, J
    Klír, D
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 : 127 - 132
  • [38] Neon photoionization experiments driven by Z-pinch radiation
    Bailey, JE
    Cohen, D
    Chandler, GA
    Cuneo, ME
    Foord, ME
    Heeter, RF
    Jobe, D
    Lake, P
    Liedahl, DA
    MacFarlane, JJ
    Nash, TJ
    Nielson, D
    Smelser, R
    Stygar, WA
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2001, 71 (2-6): : 157 - 168
  • [39] Power scaling of a Z-pinch extreme ultraviolet source
    McGeoch, MW
    EMERGING LITHOGRAPHIC TECHNOLOGIES IV, 2000, 3997 : 861 - 866
  • [40] Efficient computation of current in multiwire Z-pinch arrays
    Strickler, TS
    Gilgenbach, RM
    Johnston, MD
    Lau, YY
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2003, 31 (06) : 1384 - 1387