Infinite loop spaces from operads with homological stability

被引:7
作者
Basterra, Maria [1 ]
Bobkova, Irina [2 ]
Ponto, Kate [3 ]
Tillmann, Ulrike [4 ]
Yeakel, Sarah [5 ]
机构
[1] Univ New Hampshire, Dept Math, Durham, NH 03824 USA
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[3] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[4] Univ Oxford, Dept Math, Oxford OX2 6GG, England
[5] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
Operads; Homological stability; Infinite loop spaces; Moduli spaces of manifolds; MAPPING CLASS-GROUPS; GROUP-COMPLETION; MODULI SPACES; HOMOTOPY;
D O I
10.1016/j.aim.2017.09.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the operad built from moduli spaces of Riemann surfaces, we consider a general class of operads in the category of spaces that satisfy certain homological stability conditions. We prove that such operads are infinite loop space operads in the sense that the group completions of their algebras are infinite loop spaces. The recent, strong homological stability results of Galatius and Randal-Williams for moduli spaces of even dimensional manifolds can be used to construct examples of operads with homological stability. As a consequence diffeomorphism groups and mapping class groups are shown to give rise to infinite loop spaces. Furthermore, the map to K-theory defined by the action of the diffeomorphisms on the middle dimensional homology is shown to be a map of infinite loop spaces. (c) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:391 / 430
页数:40
相关论文
共 35 条
  • [1] [Anonymous], 1994, CAMBRIDGE STUDIES AD, DOI DOI 10.1017/CBO9781139644136
  • [2] BARRATT MG, 1974, TOPOLOGY, V13, P113
  • [3] Basterra M., 2017, TOPOLOGY AP IN PRESS
  • [4] Boardman J. M., 1973, Lecture Notes in Math., V347
  • [5] Stable moduli spaces of high-dimensional handlebodies
    Botvinnik, Boris
    Perlmutter, Nathan
    [J]. JOURNAL OF TOPOLOGY, 2017, 10 (01) : 101 - 163
  • [6] Bousfield A K, 1978, Lecture Notes in Math., V658, P80, DOI DOI 10.1007/BFB0068711.2.3,3
  • [7] Ebert J, 2012, DOC MATH, V17, P417
  • [8] FRIEDLANDER EM, 1994, MEM AM MATH SOC, V110, pR3
  • [9] Galatius S., ANN MATH IN PRESS
  • [10] Abelian quotients of mapping class groups of highly connected manifolds
    Galatius, Soren
    Randal-Williams, Oscar
    [J]. MATHEMATISCHE ANNALEN, 2016, 365 (1-2) : 857 - 879