Proteome-Informed Machine Learning Studies of Cocaine Addiction

被引:11
作者
Gao, Kaifu [3 ]
Chen, Dong [3 ]
Robison, Alfred J. [4 ]
Wei, Guo-Wei [1 ,2 ]
机构
[1] Michigan State Univ, Dept Math, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Physiol, E Lansing, MI 48824 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
RECEPTOR ANTAGONIST; DOUBLE-BLIND; DOPAMINE; D-3; METHAMPHETAMINE; COMBINATION; MODAFINIL; MECHANISMS; INHIBITORS; IBOGAINE;
D O I
10.1021/acs.jpclett.1c03133
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
No anti-cocaine addiction drugs have been approved by the Food and Drug Administration despite decades of effort. The main challenge is the intricate molecular mechanisms of cocaine addiction, involving synergistic interactions among proteins upstream and downstream of the dopamine transporter. However, it is difficult to study so many proteins with traditional experiments, highlighting the need for innovative strategies in the field. We propose a proteome-informed machine learning (ML) platform for discovering nearly optimal anti-cocaine addiction lead compounds. We analyze proteomic protein-protein interaction networks for cocaine dependence to identify 141 involved drug targets and build 32 ML models for cross-target analysis of more than 60,000 drug candidates or experimental drugs for side effects and repurposing potentials. We further predict their ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties. Our platform reveals that essentially all of the existing drug candidates fail in our cross-target and ADMET screenings but identifies several nearly optimal leads for further optimization.
引用
收藏
页码:11122 / 11134
页数:13
相关论文
共 66 条
  • [1] Long short-term memory
    Hochreiter, S
    Schmidhuber, J
    [J]. NEURAL COMPUTATION, 1997, 9 (08) : 1735 - 1780
  • [2] An analysis of the synthetic tryptamines AMT and 5-MeO-DALT: Emerging 'Novel Psychoactive Drugs'
    Arunotayanun, Warunya
    Dalley, Jeffrey W.
    Huang, Xi-Ping
    Setola, Vincent
    Treble, Ric
    Iversen, Leslie
    Roth, Bryan L.
    Gibbons, Simon
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2013, 23 (11) : 3411 - 3415
  • [3] Dopamine signalling in reward-related behaviours
    Baik, Ja-Hyun
    [J]. FRONTIERS IN NEURAL CIRCUITS, 2013, 7
  • [4] A systematic review of modafinil: Potential clinical uses and mechanisms of action
    Ballon, Jacob S.
    Feifel, David
    [J]. JOURNAL OF CLINICAL PSYCHIATRY, 2006, 67 (04) : 554 - 566
  • [5] Brown JM, 2001, J PHARMACOL EXP THER, V296, P762
  • [6] Human ether-a-go-go-related potassium channel: exploring SAR to improve drug design
    Cavalluzzi, Maria Maddalena
    Imbrici, Paola
    Gualdani, Roberta
    Stefanachi, Angela
    Mangiatordi, Giuseppe Felice
    Lentini, Giovanni
    Nicolotti, Orazio
    [J]. DRUG DISCOVERY TODAY, 2020, 25 (02) : 344 - 366
  • [7] Cocaine-seeking behavior in response to drug-associated stimuli in rats:: Involvement receptors of D3 and D2 dopamine receptors
    Cervo, L
    Carnovali, F
    Stark, JA
    Mennini, T
    [J]. NEUROPSYCHOPHARMACOLOGY, 2003, 28 (06) : 1150 - 1159
  • [8] Insights into the modulation of dopamine transporter function by amphetamine, orphenadrine, and cocaine binding
    Cheng, Mary Hongying
    Block, Ethan
    Hu, Feizhuo
    Cobanoglu, Murat Can
    Sorkin, Alexander
    Bahar, Ivet
    [J]. FRONTIERS IN NEUROLOGY, 2015, 6
  • [9] Cho K, 2014, ARXIV14061078, P1724, DOI DOI 10.3115/V1/D14-1179
  • [10] Modafinil and cocaine: a double-blind, placebo-controlled drug interaction study
    Dackis, CA
    Lynch, KG
    Yu, E
    Samaha, FF
    Kampman, KM
    Cornish, JW
    Rowan, A
    Poole, S
    White, L
    O'Brien, CP
    [J]. DRUG AND ALCOHOL DEPENDENCE, 2003, 70 (01) : 29 - 37