A Lipid Photoswitch Controls Fluidity in Supported Bilayer Membranes

被引:48
|
作者
Urban, Patrick [5 ]
Pritzl, Stefanie D. [5 ]
Ober, Martina F. [3 ,4 ]
Dirscherl, Christina F. [3 ,4 ]
Pernpeintner, Carla [5 ]
Konrad, David B. [2 ]
Frank, James A. [6 ]
Trauner, Dirk [1 ,2 ]
Nickel, Bert [3 ,4 ]
Lohmueller, Theobald [5 ]
机构
[1] NYU, Dept Chem, 4 Washington Pl, New York, NY 10003 USA
[2] Ludwig Maximilians Univ Munchen, Dept Chem, D-81377 Munich, Germany
[3] Ludwig Maximilians Univ Munchen, Fac Phys, D-80539 Munich, Germany
[4] Ludwig Maximilians Univ Munchen, CENS, D-80539 Munich, Germany
[5] Ludwig Maximilians Universilat Munchen, Dept Phys, Nanoinst Munich, Chair Photon & Optoelect, D-80539 Munich, Germany
[6] Oregon Hlth & Sci Univ, Vollum Inst, Portland, OR 97239 USA
关键词
X-RAY-SCATTERING; DIFFUSION; TRANSITIONS; LIPOSOMES;
D O I
10.1021/acs.langmuir.9b02942
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Supported lipid bilayer (SLB) membranes are key elements to mimic membrane interfaces on a planar surface. Here, we demonstrate that azobenzene photolipids (azo-PC) form fluid, homogeneous SLBs. Diffusion properties of azo-PC within SLBs were probed by fluorescence microscopy and fluorescence recovery after photobleaching. At ambient conditions, we find that the trans-to-cis isomerization causes an increase of the diffusion constant by a factor of two. Simultaneous excitation with two wavelengths and variable intensities furthermore allows to adjust the diffusion constant D continuously. X-ray reflectometry and small-angle scattering measurements reveal that membrane photoisomerization results in a bilayer thickness reduction of similar to 0.4 nm (or 10%). While thermally induced back-switching is not observed, we find that the trans bilayer fluidity is increasing with higher temperatures. This change in diffusion constant is accompanied by a red-shift in the absorption spectra. Based on these results, we suggest that the reduced diffusivity of trans-azo-PC is controlled by intermolecular interactions that also give rise to H-aggregate formation in bilayer membranes.
引用
收藏
页码:2629 / 2634
页数:6
相关论文
共 50 条
  • [1] Formation and Fluidity Measurement of Supported Lipid Bilayer on Polyvinyl Chloride Membrane
    Kobayashi, Takuji
    Kono, Akiteru
    Futagawa, Masato
    Sawada, Kazuaki
    Tero, Ryugo
    IRAGO CONFERENCE 2013, 2014, 1585 : 145 - 152
  • [2] On-Chip Alternating Current Electrophoresis in Supported Lipid Bilayer Membranes
    Bao, Peng
    Cheetham, Matthew R.
    Roth, Johannes S.
    Blakeston, Anita C.
    Bushby, Richard J.
    Evans, Stephen D.
    ANALYTICAL CHEMISTRY, 2012, 84 (24) : 10702 - 10707
  • [3] Influence of lysophospholipid hydrolysis by the catalytic domain of neuropathy target esterase on the fluidity of bilayer lipid membranes
    Greiner, Aaron J.
    Richardson, Rudy J.
    Worden, R. Mark
    Ofoli, Robert Y.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2010, 1798 (08): : 1533 - 1539
  • [4] Lipopolymer electrophoresis in supported bilayer membranes
    Zhang, Huai-Ying
    Hill, Reghan J.
    SOFT MATTER, 2010, 6 (21) : 5625 - 5635
  • [5] Robust Photoelectric Biomolecular Switch at a Microcavity-Supported Lipid Bilayer
    Berselli, Guilherme B.
    Gimenez, Aurelien, V
    O'Connor, Alexandra
    Keyes, Tia E.
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (24) : 29158 - 29169
  • [6] Thermodynamics of interleaflet cavitation in lipid bilayer membranes
    Rappaport, Shay M.
    Berezhkovskii, Alexander M.
    Zimmerberg, Joshua
    Bezrukov, Sergey M.
    PHYSICAL REVIEW E, 2013, 87 (02)
  • [7] Membrane fluidity and the surface properties of the lipid bilayer: ESR experiment and computer simulation
    Man, Dariusz
    Olchawa, Ryszard
    Kubica, Krystian
    JOURNAL OF LIPOSOME RESEARCH, 2010, 20 (03) : 211 - 218
  • [8] Graphene-Templated Supported Lipid Bilayer Nanochannels
    Li, Wan
    Chung, Jean K.
    Lee, Young Kwang
    Groves, Jay T.
    NANO LETTERS, 2016, 16 (08) : 5022 - 5026
  • [9] Phase transition process in DDAB supported lipid bilayer
    Isogai, Takumi
    Nakada, Sakiko
    Yoshida, Naoya
    Sumi, Hayato
    Tero, Ryugo
    Harada, Shunta
    Ujihara, Toru
    Tagawa, Miho
    JOURNAL OF CRYSTAL GROWTH, 2017, 468 : 88 - 92
  • [10] The lipid bilayer concept and its experimental realization: from soap bubbles, kitchen sink, to bilayer lipid membranes
    Tien, HT
    Ottova, AL
    JOURNAL OF MEMBRANE SCIENCE, 2001, 189 (01) : 83 - 117