Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle

被引:73
|
作者
Taneja, Mohit [1 ,2 ]
Byabazaire, John [1 ,2 ]
Jalodia, Nikita [1 ,2 ]
Davy, Alan [1 ,2 ]
Olariu, Cristian [3 ]
Malone, Paul [1 ]
机构
[1] Waterford Inst Technol, Sch Sci & Comp, Dept Comp & Math, Emerging Networks Lab,Telecommun Software & Syst, Waterford, Ireland
[2] CONNECT Ctr Future Networks & Commun, Dublin, Ireland
[3] IBM Corp, Innovat Exchange, Dublin, Ireland
基金
爱尔兰科学基金会; 欧盟地平线“2020”;
关键词
Smart dairy farming; Fog computing; Internet of Things (IoT); Cloud computing; Smart farm; Data analytics; Microservices; Machine learning; Clustering; Classification; Data-driven; LYING BEHAVIOR; DATA ANALYTICS; BACK POSTURE; RISK-FACTORS; COWS; IOT; PREVALENCE; LOCOMOTION; WALKING; VALIDATION;
D O I
10.1016/j.compag.2020.105286
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Timely lameness detection is one of the major and costliest health problems in dairy cattle that farmers and practitioners haven't yet solved adequately. The primary reason behind this is the high initial setup costs, complex equipment and lack of multi-vendor interoperability in currently available solutions. On the other hand, human observation based solutions relying on visual inspections are prone to late detection with possible human error, and are not scalable. This poses a concern with increasing herd sizes, as prolonged or undetected lameness severely compromises cows' health and welfare, and ultimately affects the milk productivity of the farm. To tackle this, we have developed an end-to-end IoT application that leverages advanced machine learning and data analytics techniques to monitor the cattle in real-time and identify lame cattle at an early stage. The proposed approach has been validated on a real world smart dairy farm setup consisting of a dairy herd of 150 cows in Waterford, Ireland. Using long-range pedometers specifically designed for use in dairy cattle, we monitor the activity of each cow in the herd. The accelerometric data from these sensors is aggregated at the fog node to form a time series of behavioral activities, which are further analyzed in the cloud. Our hybrid clustering and classification model identifies each cow as either Active, Normal or Dormant, and further, Lame or Non-Lame. The detected lameness anomalies are further sent to farmer's mobile device by way of push notifications. The results indicate that we can detect lameness 3 days before it can be visually captured by the farmer with an overall accuracy of 87%. This means that the animal can either be isolated or treated immediately to avoid any further effects of lameness. Moreover, with fog based computational assistance in the setup, we see an 84% reduction in amount of data transferred to the cloud as compared to the conventional cloud based approach.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] A data-driven approach to the processing of sniffer-based gas emissions data from dairy cattle
    Lovendahl, Peter
    Milkevych, Viktor
    Nielsen, Rikke Krogh
    Bjerring, Martin
    Manzanilla-Pech, Coralia
    Johansen, Kresten
    Difford, Gareth F.
    Villumsen, Trine M.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 227
  • [12] Uncovering psychiatric phenotypes using unsupervised machine learning: A data-driven symptoms approach
    Hofman, Amy
    Lier, Isabelle
    Ikram, M. Arfan
    van Wingerden, Marijn
    Luik, Annemarie I.
    EUROPEAN PSYCHIATRY, 2023, 66 (01)
  • [13] Data-driven decision-making for lost circulation treatments: A machine learning approach
    Alkinani, Husam H.
    Al-Hameedi, Abo Taleb T.
    Dunn-Norman, Shari
    ENERGY AND AI, 2020, 2
  • [14] Damage Detection with Data-Driven Machine Learning Models on an Experimental Structure
    Alemu, Yohannes L.
    Lahmer, Tom
    Walther, Christian
    ENG, 2024, 5 (02): : 629 - 656
  • [15] Data-Driven Selection of Land Product Validation Station Based on Machine Learning
    Li, Ruoxi
    Tao, Zui
    Zhou, Xiang
    Lv, Tingting
    Wang, Jin
    Xie, Futai
    Zhai, Mingjian
    REMOTE SENSING, 2022, 14 (04)
  • [16] Attack Detection in Fog Layer for IIoT Based on Machine Learning Approach
    Maharani, Mareska Pratiwi
    Daely, Philip Tobianto
    Lee, Jae Min
    Kim, Dong-Seong
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 1880 - 1882
  • [17] Data-driven probabilistic performance of Wire EDM: A machine learning based approach
    Saha, Subhankar
    Gupta, Kritesh Kumar
    Maity, Saikat Ranjan
    Dey, Sudip
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2022, 236 (6-7) : 908 - 919
  • [18] Early lameness detection in dairy cattle based on wearable gait analysis using semi-supervised LSTM-Autoencoder
    Zhang, Kai
    Han, Shuqing
    Wu, Jianzhai
    Cheng, Guodong
    Wang, Yali
    Wu, Saisai
    Liu, Jifang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 213
  • [19] Data-driven shortened Insomnia Severity Index (ISI): a machine learning approach
    Jo, Hyeontae
    Lim, Myna
    Jeon, Hong Jun
    Ahn, Junseok
    Jeon, Saebom
    Kim, Jae Kyoung
    Chung, Seockhoon
    SLEEP AND BREATHING, 2024, 28 (04) : 1819 - 1830
  • [20] Personalized Tourist Recommender System: A Data-Driven and Machine-Learning Approach
    Shrestha, Deepanjal
    Tan, Wenan
    Shrestha, Deepmala
    Rajkarnikar, Neesha
    Jeong, Seung-Ryul
    COMPUTATION, 2024, 12 (03)