Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle

被引:73
|
作者
Taneja, Mohit [1 ,2 ]
Byabazaire, John [1 ,2 ]
Jalodia, Nikita [1 ,2 ]
Davy, Alan [1 ,2 ]
Olariu, Cristian [3 ]
Malone, Paul [1 ]
机构
[1] Waterford Inst Technol, Sch Sci & Comp, Dept Comp & Math, Emerging Networks Lab,Telecommun Software & Syst, Waterford, Ireland
[2] CONNECT Ctr Future Networks & Commun, Dublin, Ireland
[3] IBM Corp, Innovat Exchange, Dublin, Ireland
基金
爱尔兰科学基金会; 欧盟地平线“2020”;
关键词
Smart dairy farming; Fog computing; Internet of Things (IoT); Cloud computing; Smart farm; Data analytics; Microservices; Machine learning; Clustering; Classification; Data-driven; LYING BEHAVIOR; DATA ANALYTICS; BACK POSTURE; RISK-FACTORS; COWS; IOT; PREVALENCE; LOCOMOTION; WALKING; VALIDATION;
D O I
10.1016/j.compag.2020.105286
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Timely lameness detection is one of the major and costliest health problems in dairy cattle that farmers and practitioners haven't yet solved adequately. The primary reason behind this is the high initial setup costs, complex equipment and lack of multi-vendor interoperability in currently available solutions. On the other hand, human observation based solutions relying on visual inspections are prone to late detection with possible human error, and are not scalable. This poses a concern with increasing herd sizes, as prolonged or undetected lameness severely compromises cows' health and welfare, and ultimately affects the milk productivity of the farm. To tackle this, we have developed an end-to-end IoT application that leverages advanced machine learning and data analytics techniques to monitor the cattle in real-time and identify lame cattle at an early stage. The proposed approach has been validated on a real world smart dairy farm setup consisting of a dairy herd of 150 cows in Waterford, Ireland. Using long-range pedometers specifically designed for use in dairy cattle, we monitor the activity of each cow in the herd. The accelerometric data from these sensors is aggregated at the fog node to form a time series of behavioral activities, which are further analyzed in the cloud. Our hybrid clustering and classification model identifies each cow as either Active, Normal or Dormant, and further, Lame or Non-Lame. The detected lameness anomalies are further sent to farmer's mobile device by way of push notifications. The results indicate that we can detect lameness 3 days before it can be visually captured by the farmer with an overall accuracy of 87%. This means that the animal can either be isolated or treated immediately to avoid any further effects of lameness. Moreover, with fog based computational assistance in the setup, we see an 84% reduction in amount of data transferred to the cloud as compared to the conventional cloud based approach.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] SmartHerd management: A microservices-based fog computing-assisted IoT platform towards data-driven smart dairy farming
    Taneja, Mohit
    Jalodia, Nikita
    Byabazaire, John
    Davy, Alan
    Olariu, Cristian
    SOFTWARE-PRACTICE & EXPERIENCE, 2019, 49 (07) : 1055 - 1078
  • [2] A data-driven approach using machine learning for early detection of the lean blowout
    Hasti, Veeraraghava Raju
    Navarkar, Abhishek
    Gore, Jay P.
    ENERGY AND AI, 2021, 5
  • [3] Learning to Detect: A Data-driven Approach for Network Intrusion Detection
    Tauscher, Zachary
    Jiang, Yushan
    Zhang, Kai
    Wang, Jian
    Song, Houbing
    2021 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE (IPCCC), 2021,
  • [4] Fog Computing Approach for Music Cognition System Based on Machine Learning Algorithm
    Lu, Lifei
    Xu, Lida
    Xu, Boyi
    Li, Guoqiang
    Cai, Hongming
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2018, 5 (04): : 1142 - 1151
  • [5] CPS data streams analytics based on machine learning for Cloud and Fog Computing: A survey
    Fei, Xiang
    Shah, Nazaraf
    Verba, Nandor
    Chao, Kuo-Ming
    Sanchez-Anguix, Victor
    Lewandowski, Jacek
    James, Anne
    Usman, Zahid
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 90 : 435 - 450
  • [6] Prediction of casing damage: A data-driven, machine learning approach
    Zhao Y.
    Jiang H.
    Li H.
    International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 1047 - 1053
  • [7] Data-Driven Machine Learning Approach to Integrate Field Submittals in Project Scheduling
    Awada, Mohamad
    Srour, F. Jordan
    Srour, Issam M.
    JOURNAL OF MANAGEMENT IN ENGINEERING, 2021, 37 (01)
  • [8] A data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of Things
    Xu, Hao
    Sun, Zihan
    Cao, Yuan
    Bilal, Hazrat
    SOFT COMPUTING, 2023, 27 (19) : 14469 - 14481
  • [9] Load Redistribution Attack Detection using Machine Learning: A Data-Driven Approach
    Pinceti, Andrea
    Sankar, Lalitha
    Kosut, Oliver
    2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [10] Prediction of fatigue crack propagation lives based on machine learning and data-driven approach
    Sun, Li
    Huang, Xiaoping
    JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2024, 9 (06) : 592 - 604