Fundamentals on the noncommutative plane

被引:0
|
作者
Zunger, Y [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2001年 / 04期
关键词
field theories in lower dimensions; non-commutative geometry;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the addition of charged matter ("fundametals") to noncommutative Yang-Mills theory and noncommutative QED, derive Feynman rules and tree-level potentials for them, and study the divergence structure of the theory. These particles behave very much as they do in the commutative theory, except that (1) they occupy bound-state wavefunctions which are essentially those of charged particles in magnetic fields, and (2) there is slight momentum nonconservation at vertices. There is no reduction in the degree of divergence of charged fermion loops like that which affects nonplanar noncommutative Yang-Mills diagrams.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] NONCOMMUTATIVE RESIDUE .1. FUNDAMENTALS
    WODZICKI, M
    LECTURE NOTES IN MATHEMATICS, 1987, 1289 : 320 - 399
  • [2] Bosonization in the noncommutative plane
    Ghosh, S
    PHYSICS LETTERS B, 2003, 563 (1-2) : 112 - 116
  • [3] Plane waves in noncommutative fluids
    Abdalla, M. C. B.
    Holender, L.
    Santos, M. A.
    Vancea, I. V.
    PHYSICS LETTERS A, 2013, 377 (18) : 1227 - 1232
  • [4] The geometry of noncommutative plane curves
    Jondrup, Soren
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (09) : 3467 - 3477
  • [5] Dimension of noncommutative plane curves
    Jondrup, Soren
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (03)
  • [6] Connes Integration Formula for the Noncommutative Plane
    F. Sukochev
    D. Zanin
    Communications in Mathematical Physics, 2018, 359 : 449 - 466
  • [7] Symmetries of Field Theories on the Noncommutative Plane
    P. A. Horvathy
    L. Martina
    P. C. Stichel
    Theoretical and Mathematical Physics, 2005, 144 : 935 - 943
  • [8] On the deformed squeezed states on noncommutative plane
    Liu Hong-ling
    Guo Guang-Jie
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2011, 9 (05): : 1261 - 1266
  • [9] Connes Integration Formula for the Noncommutative Plane
    Sukochev, F.
    Zanin, D.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 359 (02) : 449 - 466
  • [10] Anyon wave equations and the noncommutative plane
    Horváthy, PA
    Plyushchay, MS
    PHYSICS LETTERS B, 2004, 595 : 547 - 555