Molecular origin and dynamic behavior of slip in sheared polymer films

被引:172
作者
Priezjev, NV [1 ]
Troian, SM [1 ]
机构
[1] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
关键词
D O I
10.1103/PhysRevLett.92.018302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The behavior of the slip length in thin polymer films subject to planar shear is investigated using molecular dynamics simulations. At low shear rates, the slip length extracted from the velocity profiles correlates well with that computed from a Green-Kubo analysis. Beyond chain lengths of about N=10, the molecular weight dependence of the slip length is dominated strongly by the bulk viscosity. The dynamical response of the slip length with increasing shear rate is well captured by a power law up to a critical value where the momentum transfer between wall and fluid reaches its maximum.
引用
收藏
页数:4
相关论文
共 27 条
[1]  
Allen M. P., 2017, Computer Simulation of Liquids, VSecond, DOI [10.1093/oso/9780198803195.001.0001, DOI 10.1093/OSO/9780198803195.001.0001]
[2]   Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface [J].
Barrat, JL ;
Bocquet, L .
FARADAY DISCUSSIONS, 1999, 112 :119-127
[3]   Large slip effect at a nonwetting fluid-solid interface [J].
Barrat, JL ;
Bocquet, L .
PHYSICAL REVIEW LETTERS, 1999, 82 (23) :4671-4674
[4]  
Bird R. B., 1987, DYNAMICS POLYM LIQUI, V2
[5]   MOLECULAR-DYNAMICS OF FLOW IN MICROPORES [J].
BITSANIS, I ;
MAGDA, JJ ;
TIRRELL, M ;
DAVIS, HT .
JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (03) :1733-1750
[6]   SLIP BETWEEN A LIQUID AND A SOLID - TOLSTOI,D.M. (1952) THEORY RECONSIDERED [J].
BLAKE, TD .
COLLOIDS AND SURFACES, 1990, 47 :135-145
[7]   HYDRODYNAMIC BOUNDARY-CONDITIONS, CORRELATION-FUNCTIONS, AND KUBO RELATIONS FOR CONFINED FLUIDS [J].
BOCQUET, L ;
BARRAT, JL .
PHYSICAL REVIEW E, 1994, 49 (04) :3079-3092
[8]  
BROCHARDWYART F, 1990, CR ACAD SCI II, V310, P1169
[9]  
FRENKEL JI, 1946, THEORY LIQUIDS
[10]   MOLECULAR-DYNAMICS SIMULATION FOR POLYMERS IN THE PRESENCE OF A HEAT BATH [J].
GREST, GS ;
KREMER, K .
PHYSICAL REVIEW A, 1986, 33 (05) :3628-3631