Ruling Out Real-Valued Standard Formalism of Quantum Theory

被引:64
作者
Chen, Ming-Cheng [1 ,2 ,3 ,4 ]
Wang, Can [1 ,2 ,3 ,4 ]
Liu, Feng-Ming [1 ,2 ,3 ,4 ]
Wang, Jian-Wen [1 ,2 ,3 ,4 ]
Ying, Chong [1 ,2 ,3 ,4 ]
Shang, Zhong-Xia [1 ,2 ,3 ,4 ]
Wu, Yulin [1 ,2 ,3 ,4 ]
Gong, M. [1 ,2 ,3 ,4 ]
Deng, H. [1 ,2 ,3 ,4 ]
Liang, F-T [1 ,2 ,3 ,4 ]
Zhang, Qiang [1 ,2 ,3 ,4 ]
Peng, Cheng-Zhi [1 ,2 ,3 ,4 ]
Zhu, Xiaobo [1 ,2 ,3 ,4 ]
Cabello, Adan [5 ,6 ]
Lu, Chao-Yang [1 ,2 ,3 ,4 ]
Pan, Jian-Wei [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Shanghai 201315, Peoples R China
[4] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
[5] Univ Seville, Dept Fis Aplicada 2, E-41012 Seville, Spain
[6] Univ Seville, Inst Carlos I Fis Teor & Computac, E-41012 Seville, Spain
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
36;
D O I
10.1103/PhysRevLett.128.040403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Standard quantum theory was formulated with complex-valued Schrodinger equations, wave functions, operators, and Hilbert spaces. Previous work attempted to simulate quantum systems using only real numbers by exploiting an enlarged Hilbert space. A fundamental question arises: are the complex numbers really necessary in the standard formalism of quantum theory? To answer this question, a quantum game has been developed to distinguish standard quantum theory from its real-number analog, by revealing a contradiction between a high-fidelity multiqubit quantum experiment and players using only real-number quantum theory. Here, using superconducting qubits, we faithfully realize the quantum game based on deterministic entanglement swapping with a state-of-the-art fidelity of 0.952. Our experimental results violate the real-number bound of 7.66 by 43 standard deviations. Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Optimal randomness certification from one entangled bit [J].
Acin, Antonio ;
Pironio, Stefano ;
Vertesi, Tamas ;
Wittek, Peter .
PHYSICAL REVIEW A, 2016, 93 (04)
[2]   Real-vector-space quantum theory with a universal quantum bit [J].
Aleksandrova, Antoniya ;
Borish, Victoria ;
Wootters, William K. .
PHYSICAL REVIEW A, 2013, 87 (05)
[3]   Diabatic Gates for Frequency-Tunable Superconducting Qubits [J].
Barends, R. ;
Quintana, C. M. ;
Petukhov, A. G. ;
Chen, Yu ;
Kafri, D. ;
Kechedzhi, K. ;
Collins, R. ;
Naaman, O. ;
Boixo, S. ;
Arute, F. ;
Arya, K. ;
Buell, D. ;
Burkett, B. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Foxen, B. ;
Fowler, A. ;
Gidney, C. ;
Giustina, M. ;
Graff, R. ;
Huang, T. ;
Jeffrey, E. ;
Kelly, J. ;
Klimov, P. V. ;
Kostritsa, F. ;
Landhuis, D. ;
Lucero, E. ;
McEwen, M. ;
Megrant, A. ;
Mi, X. ;
Mutus, J. ;
Neeley, M. ;
Neill, C. ;
Ostby, E. ;
Roushan, P. ;
Sank, D. ;
Satzinger, K. J. ;
Vainsencher, A. ;
White, T. ;
Yao, J. ;
Yeh, P. ;
Zalcman, A. ;
Neven, H. ;
Smelyanskiy, V. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2019, 123 (21)
[4]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[5]   Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Sank, D. ;
Jeffrey, E. ;
Chen, Y. ;
Yin, Y. ;
Chiaro, B. ;
Mutus, J. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Wenner, J. ;
White, T. C. ;
Cleland, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[6]  
Bell J., 1964, Phys. Phys. Fiz., V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/PhysicsPhysiqueFizika.1.195]
[7]   The logic of quantum mechanics [J].
Birkhoff, G ;
von Neumann, J .
ANNALS OF MATHEMATICS, 1936, 37 :823-843
[8]   Self-testing of Pauli observables for device-independent entanglement certification [J].
Bowles, Joseph ;
Supic, Ivan ;
Cavalcanti, Daniel ;
Acin, Antonio .
PHYSICAL REVIEW A, 2018, 98 (04)
[9]   Four Postulates of Quantum Mechanics Are Three [J].
Carcassi, Gabriele ;
Maccone, Lorenzo ;
Aidala, Christine A. .
PHYSICAL REVIEW LETTERS, 2021, 126 (11)
[10]   PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES [J].
CLAUSER, JF ;
HORNE, MA ;
SHIMONY, A ;
HOLT, RA .
PHYSICAL REVIEW LETTERS, 1969, 23 (15) :880-&