Infinite Bernoulli convolutions with different probabilities

被引:4
|
作者
Toth, Hajnal R. [1 ]
机构
[1] Budapest Univ Technol & Econ, Inst Math, H-1529 Budapest, Hungary
关键词
Bernoulli convolutions; Self-similar measures;
D O I
10.3934/dcds.2008.21.595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let lambda is an element of (0, 1) and p is an element of (0, 1). Consider the following random sum Y-lambda(p) :=Sigma(infinity)(n=0) where the "+" and "-" signs are chosen independently with probability p and 1 - p. Let nu(p)(lambda) be the distribution of the random sum nu(p)(lambda) (E) := Prob(Y-lambda(p) is an element of E) A A 'X for every set E. The conjecture is that for every p is an element of (0, 1) the measure nu(p)(lambda) is absolutely continuous w.r.t. Lebesgue measure and with the density in L-2(R) for almost every lambda is an element of (p(p) center dot (1 - p)((1 - p)), 1). B. Solomyak and Y. Peres [ , Corollary 1.4] proved that for every p is an element of (1/3, 2\3) the distribution nu(p)(lambda) is absolutely continuous with L-2 (R) density for almost every lambda is an element of (p(2) + (1 - p)(2),1). In this paper we extend the parameter interval where a weakened version of the conjecture still holds. Namely, we prove Corollary 3 that for every p is an element of (0, 1/3] the measure nu(p)(lambda) is absolutely continuous with L-2(R) density for almost every lambda is an element of (F(p), 1), where F(p) = (1 - 2p)(2-log 41/log 9), see Figure 3.
引用
收藏
页码:595 / 600
页数:6
相关论文
共 50 条
  • [1] Spectrality of infinite Bernoulli convolutions
    An, Li-Xiang
    He, Xing-Gang
    Li, Hai-Xiang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (05) : 1571 - 1590
  • [2] Dimension, measure and infinite Bernoulli convolutions
    Cooper, MJP
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 : 135 - 149
  • [3] Moments of infinite convolutions of symmetric Bernoulli distributions
    Escribano, C
    Sastre, MA
    Torrano, E
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 153 (1-2) : 191 - 199
  • [4] On fine fractal properties of generalized infinite Bernoulli convolutions
    Albeverio, Sergio
    Torbin, Grygoriy
    BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (08): : 711 - 727
  • [5] Spectra of Bernoulli convolutions and random convolutions
    Fu, Yan-Song
    He, Xing-Gang
    Wen, Zhi-Xiong
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 116 : 105 - 131
  • [6] On symmetric Bernoulli convolutions
    Kawata, T
    AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 : 792 - 794
  • [7] Notes on Bernoulli convolutions
    Solomyak, B
    FRACTAL GEOMETRY AND APPLICATIONS: A JUBILEE OF BENOIT MANDELBROT - ANALYSIS, NUMBER THEORY, AND DYNAMICAL SYSTEMS, PT 1, 2004, 72 : 207 - 230
  • [8] ON THE DIMENSION OF BERNOULLI CONVOLUTIONS
    Breuillard, Emmanuel
    Varju, Peter P.
    ANNALS OF PROBABILITY, 2019, 47 (04): : 2582 - 2617
  • [9] On symmetric Bernoulli convolutions
    Kershner, R
    Wintner, A
    AMERICAN JOURNAL OF MATHEMATICS, 1935, 57 : 541 - 548
  • [10] On random Bernoulli convolutions
    Persson, Tomas
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (02): : 203 - 213