Thermal boundary resistance between GaN and substrate in AlGaN/GaN electronic devices

被引:233
作者
Sarua, Andrei
Ji, Hangfeng
Hilton, K. P.
Wallis, D. J.
Uren, Michael J.
Martin, T.
Kuball, Martin
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] QinetiQ Ltd, Malvern WR14 3PS, Worcs, England
基金
英国工程与自然科学研究理事会;
关键词
field-effect transistors (FETs); gallium compounds; high-electron mobility transistors (HEMTs); Raman spectroscopy; temperature measurements; thermal boundary resistance (TBR); thermal simulations;
D O I
10.1109/TED.2007.908874
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The influence of a thermal boundary resistance (TBR) on temperature distribution in ungated AlGaN/GaN field-effect devices was investigated using 3-D micro-Raman thermography. The temperature distribution in operating AlGaN/GaN devices on SiC, sapphire, and Si substrates was used to determine values for the TBR by comparing experimental results to finite-difference thermal simulations. While the measured TBR of about 3.3 x 10(-8) W-1 center dot m(2) center dot K for devices on SiC and Si substrates has a sizeable effect on the self-heating in devices, the TBR of up to 1.2 x 10(-7) W-1 center dot m(2) center dot K plays an insignificant role in devices on sapphire substrates due to the low thermal conductivity of the substrate. The determined effective TBR was found to increase with temperature at the GaN/SiC interface from 3.3 x 10(-8) W-1 center dot m(2) center dot K at 150 degrees C to 6.5 x 10(-8) W-1 center dot m(2) center dot K at 275 degrees C, respectively. The contribution of a low-thermal-conductivity GaN layer at the GaN/substrate interface toward the effective TBR in devices and its temperature dependence are also discussed.
引用
收藏
页码:3152 / 3158
页数:7
相关论文
共 32 条
  • [1] AlGaN/GaN heterostructure field-effect transistor model including thermal effects
    Albrecht, JD
    Ruden, PP
    Binari, SC
    Ancona, MG
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2000, 47 (11) : 2031 - 2036
  • [2] ALBRECHT JD, 1999, P MAT RES S, V572, P498
  • [3] [Anonymous], PROPERTIES PROCESSIN
  • [4] Role of interface disorder on thermal boundary conductance using a virtual crystal approach
    Beechem, Thomas
    Graham, Samuel
    Hopkins, Patrick
    Norris, Pamela
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (05)
  • [5] THERMAL-CONDUCTIVITY AND ELECTRICAL-PROPERTIES OF 6H SILICON-CARBIDE
    BURGEMEISTER, EA
    VONMUENCH, W
    PETTENPAUL, E
    [J]. JOURNAL OF APPLIED PHYSICS, 1979, 50 (09) : 5790 - 5794
  • [6] Optical pump-and-probe measurement of the thermal conductivity of nitride thin films
    Daly, BC
    Maris, HJ
    Nurmikko, AV
    Kuball, M
    Han, J
    [J]. JOURNAL OF APPLIED PHYSICS, 2002, 92 (07) : 3820 - 3824
  • [7] Electric-field-induced heating and energy relaxation in GaN
    Eckhause, TA
    Süzer, O
    Kurdak, Ç
    Yun, F
    Morkoç, H
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (18) : 3035 - 3037
  • [8] Filippov KA, 2003, MRS INTERNET J N S R, V8
  • [9] Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy
    Florescu, DI
    Asnin, VM
    Pollak, FH
    Jones, AM
    Ramer, JC
    Schurman, MJ
    Ferguson, I
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (10) : 1464 - 1466
  • [10] THERMAL CONDUCTIVITY ELECTRICAL RESISTIVITY AND SEEBECK COEFFICIENT OF SILICON FROM 100 TO 1300 DEGREE K
    FULKERSON, W
    MOORE, JP
    WILLIAMS, RK
    GRAVES, RS
    MCELROY, DL
    [J]. PHYSICAL REVIEW, 1968, 167 (03): : 765 - +