A Convergent Differentially Private k-Means Clustering Algorithm

被引:13
作者
Lu, Zhigang [1 ]
Shen, Hong [1 ,2 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Adelaide, SA, Australia
[2] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Peoples R China
来源
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I | 2019年 / 11439卷
基金
澳大利亚研究理事会; 国家重点研发计划;
关键词
Differential privacy; Adversarial machine learning; k-means clustering;
D O I
10.1007/978-3-030-16148-4_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Preserving differential privacy (DP) for the iterative clustering algorithms has been extensively studied in the interactive and the non-interactive settings. However, existing interactive differentially private clustering algorithms suffer from a non-convergence problem, i.e., these algorithms may not terminate without a predefined number of iterations. This problem severely impacts the clustering quality and the efficiency of the algorithm. To resolve this problem, we propose a novel iterative approach in the interactive settings which controls the orientation of the centroids movement over the iterations to ensure the convergence by injecting DP noise in a selected area. We prove that, in the expected case, our approach converges to the same centroids as Lloyd's algorithm in at most twice the iterations of Lloyd's algorithm. We perform experimental evaluations on real-world datasets to show that our algorithm outperforms the state-of-the-art of the interactive differentially private clustering algorithms with a guaranteed convergence and better clustering quality to meet the same DP requirement.
引用
收藏
页码:612 / 624
页数:13
相关论文
共 50 条
  • [41] An ordered clustering algorithm based on K-means and the PROMETHEE method
    Chen, Liuhao
    Xu, Zeshui
    Wang, Hai
    Liu, Shousheng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (06) : 917 - 926
  • [42] An improved K-means clustering algorithm for fish image segmentation
    Yao, Hong
    Duan, Qingling
    Li, Daoliang
    Wang, Jianping
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 58 (3-4) : 784 - 792
  • [43] K-means Clustering: An Efficient Algorithm for Protein Complex Detection
    Kalaivani, S.
    Ramyachitra, D.
    Manikandan, P.
    PROGRESS IN COMPUTING, ANALYTICS AND NETWORKING, ICCAN 2017, 2018, 710 : 449 - 459
  • [44] An Optimal Distributed K-Means Clustering Algorithm Based on CloudStack
    Mao, Yingchi
    Xu, Ziyang
    Li, Xiaofang
    Ping, Ping
    2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 3149 - 3156
  • [45] An ordered clustering algorithm based on K-means and the PROMETHEE method
    Liuhao Chen
    Zeshui Xu
    Hai Wang
    Shousheng Liu
    International Journal of Machine Learning and Cybernetics, 2018, 9 : 917 - 926
  • [46] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [47] Clustering Data in Power Management System Using k-Means Clustering Algorithm
    Aryani, Ressy
    Nasrun, Muhammad
    Setianingsih, Casi
    Murti, Muhammad Ary
    2019 IEEE ASIA PACIFIC CONFERENCE ON WIRELESS AND MOBILE (APWIMOB), 2019, : 164 - 170
  • [48] k-means clustering of extremes
    Janssen, Anja
    Wan, Phyllis
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 1211 - 1233
  • [49] AN INITIALIZATION METHOD OF K-MEANS CLUSTERING ALGORITHM FOR MIXED DATA
    Li, Taoying
    Jin, Zhihong
    Chen, Yan
    Ebonzo, Angelo Dan Menga
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2014, 10 (05): : 1873 - 1883
  • [50] A quantum-inspired genetic algorithm for k-means clustering
    Xiao, Jing
    Yan, YuPing
    Zhang, Jun
    Tang, Yong
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (07) : 4966 - 4973