High Capacity and Cycle-Stable Hard Carbon Anode for Nonflammable Sodium-Ion Batteries

被引:58
|
作者
Liu, Xingwei [1 ]
Jiang, Xiaoyu [1 ]
Zeng, Ziqi [1 ]
Ai, Xinping [1 ]
Yang, Hanxi [1 ]
Zhong, Faping [2 ]
Xia, Yongyao [3 ,4 ]
Cao, Yuliang [1 ]
机构
[1] Wuhan Univ, Hubei Key Lab Electrochem Power Sources, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
[2] Natl Engn Res Ctr Adv Energy Storage Mat, Changsha 410205, Hunan, Peoples R China
[3] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat iChEM, Inst New Energy, Dept Chem, Shanghai 200433, Peoples R China
[4] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat iChEM, Inst New Energy, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
phosphate electrolytes; high molar ratio; safety; hard carbon anode; sodium-ion batteries; NITROGEN-DOPED CARBON; LIQUID ELECTROLYTES; SUPERIOR CATHODE; PRUSSIAN BLUE; LI-ION; PHOSPHATE; SURFACE;
D O I
10.1021/acsami.8b16129
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nonflammable phosphate electrolytes are in principle able to build intrinsically safe Na-ion batteries, but their electrochemical incompatibility with anodic materials, especially hard carbon anode, restricts their battery applications. Here, we propose a new strategy to enable high-capacity utilization and cycle stability of hard carbon anodes in the nonflammable phosphate electrolyte by using low-cost Na+ salt with a high molar ratio of salt/solvent combined with an solid electrolyte interphase film-forming additive. As a result, the carbon anode in the trimethyl phosphate (TMP) electrolyte with a high molar ratio of [NaClO4]/[TMP] and 5% fluoroethylene carbonate additive demonstrates a high reversible capacity of 238 mAh g(-1) considerable rate capability, and long-term cycling life with 84% capacity retention over 1500 cycles. More significantly, this work provides a promising route to build intrinsically safe and low-cost sodium-ion batteries for large-scale energy storage applications.
引用
收藏
页码:38141 / 38150
页数:10
相关论文
共 50 条
  • [21] Designing Tin and Hard Carbon Architecture for Stable Sodium-Ion Battery Anode
    Shahzad, Rana Faisal
    Rasul, Shahid
    Mamlouk, Mohamed
    Brewis, Ian
    Shakoor, Rana Abdul
    Zia, Abdul Wasy
    SMALL STRUCTURES, 2025, 6 (02):
  • [22] Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries
    Wu, Feng
    Zhang, Minghao
    Bai, Ying
    Wang, Xinran
    Dong, Ruiqi
    Wu, Chuan
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (13) : 12554 - 12561
  • [23] High capacity hard carbon derived from lotus stem as anode for sodium ion batteries
    Zhang, Nan
    Liu, Qing
    Chen, Weilun
    Wan, Min
    Li, Xiaocheng
    Wang, Lili
    Xue, Lihong
    Zhang, Wuxing
    JOURNAL OF POWER SOURCES, 2018, 378 : 331 - 337
  • [24] Ionic-conductive sodium titanate to boost sodium-ion transport kinetics of hard carbon anode in sodium-ion batteries
    Li, Fan
    Gong, Hao
    Zhang, Yanlei
    Liu, Xinyu
    Jiang, Zhenming
    Chen, Lian
    Huang, Jianying
    Zhang, Yanyan
    Jiang, Yinzhu
    Chen, Binmeng
    Tang, Yuxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 981
  • [25] From food waste to high-capacity hard carbon for rechargeable sodium-ion batteries
    Kalibek, Madina
    Rakhymbay, Lunara
    Zhakiyeva, Zhanar
    Bakenov, Zhumabay
    Myung, Seung-Taek
    Konarov, Aishuak
    CARBON RESOURCES CONVERSION, 2024, 7 (03)
  • [26] Hard carbon anode from sodium lignosulfonate-formaldehyde resin for sodium-ion batteries
    EL Moctar, Ismaila
    Diawara, Moussa
    Seydou, Mahamadou
    Yu, Jianyuan
    Ma, Yanli
    Huang, Haibo
    Li, Shujun
    CARBON LETTERS, 2025,
  • [27] Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries
    Zheng, Peng
    Liu, Ting
    Guo, Shouwu
    SCIENTIFIC REPORTS, 2016, 6
  • [28] Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries
    Wang, Kun
    Jin, Yu
    Sun, Shixiong
    Huang, Yangyang
    Peng, Jian
    Luo, Jiahuan
    Zhang, Qin
    Qiu, Yuegang
    Fang, Chun
    Han, Jiantao
    ACS OMEGA, 2017, 2 (04): : 1687 - 1695
  • [29] Utilization of PET derived hard carbon as a battery-type, higher plateau capacity anode for sodium-ion and potassium-ion batteries
    Nagmani
    Puravankara, Sreeraj
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 946
  • [30] Synthesis strategies of hard carbon anodes for sodium-ion batteries
    Yin, Jian
    Zhang, Ye Shui
    Liang, Hanfeng
    Zhang, Wenli
    Zhu, Yunpei
    MATERIALS REPORTS: ENERGY, 2024, 4 (02):