Rank Bounds for Approximating Gaussian Densities in the Tensor-Train Format

被引:6
|
作者
Rohrbach, Paul B. [1 ]
Dolgov, Sergey [2 ]
Grasedyck, Lars [3 ]
Scheichl, Robert [4 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Bath, Dept Math Sci, Claverton Down, Bath BA2 7AY, Avon, England
[3] Rhein Westfal TH Aachen, Inst Geomet & Prakt Math, Templergraben 55, D-52056 Aachen, Germany
[4] Heidelberg Univ, Inst Appl Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
来源
基金
英国工程与自然科学研究理事会;
关键词
tensor; Tensor-Train; high-dimensional; low rank; Gaussian probability distribution; DECOMPOSITION; ALGORITHM; TT;
D O I
10.1137/20M1314653
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Low-rank tensor approximations have shown great potential for uncertainty quantification in high dimensions, for example, to build surrogate models that can be used to speed up large-scale inference problems [M. Eigel, M. Marschall, and R. Schneider, Inverse Problems, 34 (2018), 035010; S. Dolgov et al., Stat. Comput., 30 (2020), pp. 603-625]. The feasibility and efficiency of such approaches depends critically on the rank that is necessary to represent or approximate the underlying distribution. In this paper, a priori rank bounds for approximations in the functional Tensor-Train representation for the case of Gaussian models are developed. It is shown that under suitable conditions on the precision matrix, the Gaussian density can be approximated to high accuracy without suffering from an exponential growth of complexity as the dimension increases. These results provide a rigorous justification of the suitability and the limitations of low-rank tensor methods in a simple but important model case. Numerical experiments confirm that the rank bounds capture the qualitative behavior of the rank structure when varying the parameters of the precision matrix and the accuracy of the approximation. Finally, the practical relevance of the theoretical results is demonstrated in the context of a Bayesian filtering problem.
引用
收藏
页码:1191 / 1224
页数:34
相关论文
共 50 条
  • [41] Bounds on the tensor rank
    Edoardo Ballico
    Alessandra Bernardi
    Luca Chiantini
    Elena Guardo
    Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 1771 - 1785
  • [42] DICTIONARY-BASED TENSOR-TRAIN SPARSE CODING
    Boudehane, Abdelhak
    Zniyed, Yassine
    Tenenhaus, Arthur
    Le Brusquet, Laurent
    Boyer, Remy
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1000 - 1004
  • [43] A two-step accelerated Levenberg-Marquardt method for solving multilinear systems in tensor-train format
    Liang, Maolin
    Zheng, Bing
    Zheng, Yutao
    Zhao, Ruijuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 382
  • [44] Low-Rank Tensor Completion by Approximating the Tensor Average Rank
    Wang, Zhanliang
    Dong, Junyu
    Liu, Xinguo
    Zeng, Xueying
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 4592 - 4600
  • [45] Tensor-Train Numerical Integration of Multivariate Functions with Singularities
    L. I. Vysotsky
    A. V. Smirnov
    E. E. Tyrtyshnikov
    Lobachevskii Journal of Mathematics, 2021, 42 : 1608 - 1621
  • [46] Tensor-Train Recurrent Neural Networks for Video Classification
    Yang, Yinchong
    Krompass, Denis
    Tresp, Volker
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [47] DYNAMICAL APPROXIMATION BY HIERARCHICAL TUCKER AND TENSOR-TRAIN TENSORS
    Lubich, Christian
    Rohwedder, Thorsten
    Schneider, Reinhold
    Vandereycken, Bart
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 470 - 494
  • [48] Convolutional Auto-Encoder with Tensor-Train Factorization
    Sharma, Manish
    Markopoulos, Panos P.
    Saber, Eli
    Asif, M. Salman
    Prater-Bennette, Ashley
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 198 - 206
  • [49] Tensor-Train Numerical Integration of Multivariate Functions with Singularities
    Vysotsky, L., I
    Smirnov, A., V
    Tyrtyshnikov, E. E.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (07) : 1608 - 1621
  • [50] Multichannel Enhanced Millimeter-Wave SAR Imaging via Low-Rank Tensor-Train Decomposition
    Zhang, Bangjie
    Xu, Gang
    Xia, Xiang-Gen
    Chen, Jianlai
    Zhou, Rui
    Shao, Shuai
    Hong, Wei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 1551 - 1561