Rank Bounds for Approximating Gaussian Densities in the Tensor-Train Format

被引:6
|
作者
Rohrbach, Paul B. [1 ]
Dolgov, Sergey [2 ]
Grasedyck, Lars [3 ]
Scheichl, Robert [4 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Bath, Dept Math Sci, Claverton Down, Bath BA2 7AY, Avon, England
[3] Rhein Westfal TH Aachen, Inst Geomet & Prakt Math, Templergraben 55, D-52056 Aachen, Germany
[4] Heidelberg Univ, Inst Appl Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
来源
基金
英国工程与自然科学研究理事会;
关键词
tensor; Tensor-Train; high-dimensional; low rank; Gaussian probability distribution; DECOMPOSITION; ALGORITHM; TT;
D O I
10.1137/20M1314653
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Low-rank tensor approximations have shown great potential for uncertainty quantification in high dimensions, for example, to build surrogate models that can be used to speed up large-scale inference problems [M. Eigel, M. Marschall, and R. Schneider, Inverse Problems, 34 (2018), 035010; S. Dolgov et al., Stat. Comput., 30 (2020), pp. 603-625]. The feasibility and efficiency of such approaches depends critically on the rank that is necessary to represent or approximate the underlying distribution. In this paper, a priori rank bounds for approximations in the functional Tensor-Train representation for the case of Gaussian models are developed. It is shown that under suitable conditions on the precision matrix, the Gaussian density can be approximated to high accuracy without suffering from an exponential growth of complexity as the dimension increases. These results provide a rigorous justification of the suitability and the limitations of low-rank tensor methods in a simple but important model case. Numerical experiments confirm that the rank bounds capture the qualitative behavior of the rank structure when varying the parameters of the precision matrix and the accuracy of the approximation. Finally, the practical relevance of the theoretical results is demonstrated in the context of a Bayesian filtering problem.
引用
收藏
页码:1191 / 1224
页数:34
相关论文
共 50 条
  • [31] Full-Mode-Augmentation Tensor-Train Rank Minimization for Hyperspectral Image Inpainting
    Zhang, Tian-Heng
    Zhao, Jian-Li
    Fang, Sheng
    Li, Zhe
    Gong, Mao-Guo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [32] Survey of the hierarchical equations of motion in tensor-train format for non-Markovian quantum dynamics
    Mangaud, Etienne
    Jaouadi, Amine
    Chin, Alex
    Desouter-Lecomte, Michele
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (12): : 1847 - 1869
  • [33] Convolutional Neural Network Compression via Tensor-Train Decomposition on Permuted Weight Tensor with Automatic Rank Determination
    Gabor, Mateusz
    Zdunek, Rafal
    COMPUTATIONAL SCIENCE - ICCS 2022, PT III, 2022, 13352 : 654 - 667
  • [34] Tensor-train WENO scheme for compressible flows
    Danis, M. Engin
    Truong, Duc
    Boureima, Ismael
    Korobkin, Oleg
    Rasmussen, Kim o.
    Alexandrov, Boian S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 529
  • [35] Fast BEM Solution for 2-D Scattering Problems Using Quantized Tensor-Train Format
    Poirier, J. -R.
    Coulaud, O.
    Kaya, O.
    IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (03)
  • [36] Nimble GNN Embedding with Tensor-Train Decomposition
    Yin, Chunxing
    Zheng, Da
    Nisa, Israt
    Faloutsos, Christos
    Karypis, George
    Vuduc, Richard
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 2327 - 2335
  • [37] PARALLEL ALGORITHMS FOR COMPUTING THE TENSOR-TRAIN DECOMPOSITION
    Shi, Tianyi
    Ruth, Maximilian
    Townsend, Alex
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : C101 - C130
  • [38] Tensor-Train Parameterization for Ultra Dimensionality Reduction
    Bai, Mingyuan
    Choy, S. T. Boris
    Song, Xin
    Gao, Junbin
    2019 10TH IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (ICBK 2019), 2019, : 17 - 24
  • [39] Error Analysis of Tensor-Train Cross Approximation
    Qin, Zhen
    Lidiak, Alexander
    Gong, Zhexuan
    Tang, Gongguo
    Wakin, Michael B.
    Zhu, Zhihui
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [40] Bounds on the tensor rank
    Ballico, Edoardo
    Bernardi, Alessandra
    Chiantini, Luca
    Guardo, Elena
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (06) : 1771 - 1785