Physiological and FtCHS Gene Expression Responses to PEG-Simulated Drought and Cadmium Stresses in Tartary Buckwheat Seedlings

被引:12
|
作者
Li, Ling [1 ]
Yan, Xuyu [1 ]
Li, Juan [1 ]
Tian, Yashan [1 ]
机构
[1] Yanan Univ, Coll Life Sicence, Shaanxi Key Lab Chinese Jujube, Yanan 716000, Peoples R China
基金
中国国家自然科学基金;
关键词
Tartary buckwheat; Abiotic stress; Physiological characteristics; Chalcone synthase; Gene expression; CHALCONE-SYNTHASE; ANTHOCYANIN BIOSYNTHESIS; SALT STRESS; TOLERANCE; CULTIVARS; IDENTIFICATION; ACCUMULATION; ENZYMES; PROTEIN; FAMILY;
D O I
10.1007/s00344-021-10530-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought and heavy metal contaminated soil has become one of the main factors affecting the sustainable development of agricultural production and the ecological environment. Tartary buckwheat is rich in flavonoids and has a high tolerance to barren land and harsh environments. Chalcone synthase (CHS) is the key enzyme in the flavonoid biosynthesis pathway, and its gene expression is regulated by tissue development and abiotic stress. In this experiment, a tartary buckwheat variety named Xiqiao 2 was used as the experimental material to analyze the physiological characteristics of seedlings and to clone the CHS gene and analyze the expression in tartary buckwheat leaves under drought and cadmium (Cd) stress. The results showed that drought and Cd stress significantly reduced root vigor but increased the activity of peroxidase (POD) and superoxide dismutase (SOD) and the content of malondialdehyde (MDA), soluble sugar, soluble protein and proline in buckwheat seedlings. A 1188 bp FtCHS gene encoding 391 amino acid residues was cloned. The expression of the FtCHS gene in tartary buckwheat increased rapidly under Cd stress, reaching a maximum at 3 h that was approximately 20 times that of the control group (0 h). The expression of the FtCHS gene decreased rapidly under drought stress; the expression level was very low within 12 h, and the change was not significant, while the increase was obvious at 12-48 h. This result indicated that the FtCHS gene actively responded to Cd stress in a short amount of time and had relatively stable adaptability to drought stress. This study provides a theoretical basis for further research on the functional characteristics of the FtCHS gene and its molecular mechanism in tartary buckwheat under abiotic stresses such as drought and soil heavy metal pollution.
引用
收藏
页码:3518 / 3529
页数:12
相关论文
共 38 条
  • [1] Physiological and FtCHS Gene Expression Responses to PEG-Simulated Drought and Cadmium Stresses in Tartary Buckwheat Seedlings
    Ling Li
    Xuyu Yan
    Juan Li
    Yashan Tian
    Journal of Plant Growth Regulation, 2022, 41 : 3518 - 3529
  • [2] Physiological, Biochemical, and Gene Expression Responses of Sugarcane Under Cold, Drought and Salt Stresses
    Kaura, V
    Malhotra, P. K.
    Mittal, A.
    Sanghera, G. S.
    Kaur, N.
    Bhardwaj, R. D.
    Cheema, R. S.
    Kaur, G.
    JOURNAL OF PLANT GROWTH REGULATION, 2023, 42 (10) : 6367 - 6376
  • [3] Transcriptome analysis revealed gene regulatory network involved in PEG-induced drought stress in Tartary buckwheat (Fagopyrum Tararicum)
    Huang, Juan
    Chen, Qijiao
    Rong, Yuping
    Tang, Bin
    Zhu, Liwei
    Ren, Rongrong
    Shi, Taoxiong
    Chen, Qingfu
    PEERJ, 2021, 9
  • [4] Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings
    Zhang, Xiangbo
    Lei, Lei
    Lai, Jinsheng
    Zhao, Haiming
    Song, Weibin
    BMC PLANT BIOLOGY, 2018, 18
  • [5] Effects of Ozonated Water Spraying on Physiological Characteristics and Gene Expression of Tartary Buckwheat
    Xu, Xiaodong
    Wang, Zizhou
    Gao, Ming
    Yang, Hong-Bing
    OZONE-SCIENCE & ENGINEERING, 2024, 46 (06) : 547 - 557
  • [6] Physiological responses to lead and PEG-simulated drought stress in metallicolous and non-metallicolous Matthiola (Brassicaceae) species from Iran
    Salehi-Eskandari, Behrooz
    Gahrouei, Mina Shahbazi
    Boyd, Robert S.
    Rajakaruna, Nishanta
    Ghasemi, Rasoul
    SOUTH AFRICAN JOURNAL OF BOTANY, 2022, 150 : 1011 - 1021
  • [7] Effects of ethephon on physiological characteristics and gene expression of Tartary buckwheat under salt stress
    Xu, Chan
    Zhang, Yan-Ping
    Yang, Hong-Bing
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2022, 82 (02): : 234 - 243
  • [8] Physiological Responses of Chionanthus retusus Seedlings to Drought and Waterlogging Stresses
    Niu, Muge
    Zhao, Tianran
    Xu, Dong
    Liu, Cuishuang
    Liu, Yuan
    Sun, Maotong
    Xie, Huicheng
    Li, Jihong
    FORESTS, 2023, 14 (02):
  • [9] Effect of aspartic acid on physiological characteristics and gene expression of salt exclusion in Tartary buckwheat under salt stress
    Zhang, Jia-Song
    Wang, Ya-Qi
    Song, Jin-Nan
    Xu, Jin-Peng
    Yang, Hong-Bing
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2020, 29 (01) : 94 - 101
  • [10] Effect of aspartic acid on physiological characteristics and gene expression of salt exclusion in Tartary buckwheat under salt stress
    Jia-Song Zhang
    Ya-Qi Wang
    Jin-Nan Song
    Jin-Peng Xu
    Hong-Bing Yang
    Journal of Plant Biochemistry and Biotechnology, 2020, 29 : 94 - 101