Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group

被引:79
作者
De Polsi, Gonzalo [1 ]
Balog, Ivan [2 ]
Tissier, Matthieu [3 ]
Wschebor, Nicolas [4 ]
机构
[1] Univ Republica, Fac Ciencias, Inst Fis, Igua 4225, Montevideo 11400, Uruguay
[2] Inst Phys, Bijenicka Cesta 46, HR-10001 Zagreb, Croatia
[3] Sorbonne Univ, CNRS, LPTMC, F-75005 Paris, France
[4] Univ Republica, Fac Ingn, Inst Fis, JH Y Reissig 565, Montevideo 11000, Uruguay
关键词
EQUATION-OF-STATE; DERIVATIVE EXPANSION; LARGE N; MODEL; FLOW; TRANSITION;
D O I
10.1103/PhysRevE.101.042113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We compute the critical exponents nu, eta and omega of O(N) models for various values of N by implementing the derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually denoted O(partial derivative(4))]. We analyze the behavior of this approximation scheme at successive orders and observe an apparent convergence with a small parameter, typically between 1/9 and 1/4, compatible with previous studies in the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents with a precision which is similar or better than those obtained by most field-theoretical techniques. We also reach a better precision than Monte Carlo simulations in some physically relevant situations. In the O(2) case, where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific heat exponent alpha, our results are compatible with those of Monte Carlo but clearly exclude experimental values.
引用
收藏
页数:22
相关论文
共 85 条
[41]   Finite size scaling study of lattice models in the three-dimensional Ising universality class [J].
Hasenbusch, Martin .
PHYSICAL REVIEW B, 2010, 82 (17)
[42]   RENORMALIZATION-GROUP STUDY OF SCALAR FIELD-THEORIES [J].
HASENFRATZ, A ;
HASENFRATZ, P .
NUCLEAR PHYSICS B, 1986, 270 (04) :687-701
[43]   Unitarity violation at the Wilson-Fisher fixed point in 4-ε dimensions [J].
Hogervorst, Matthijs ;
Rychkov, Slava ;
van Rees, Balt C. .
PHYSICAL REVIEW D, 2016, 93 (12)
[44]   Bicritical and tetracritical phenomena and scaling properties of the SO(5) theory [J].
Hu, X .
PHYSICAL REVIEW LETTERS, 2001, 87 (05) :57004-1
[45]   Minimally subtracted six-loop renormalization of O(n)-symmetric φ4 theory and critical exponents [J].
Kompaniets, Mikhail V. ;
Panzer, Erik .
PHYSICAL REVIEW D, 2017, 96 (03)
[46]   Precision islands in the Ising and O(N) models [J].
Kos, Filip ;
Poland, David ;
Simmons-Duffin, David ;
Vichi, Alessandro .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08)
[47]   Bootstrapping the O(N) archipelago [J].
Kos, Filip ;
Poland, David ;
Simmons-Duffin, David ;
Vichi, Alessandro .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (11) :1-27
[48]   Bootstrapping mixed correlators in the 3D Ising model [J].
Kos, Filip ;
Poland, David ;
Simmons-Duffin, David .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (11)
[49]  
Landau DP., 2014, GUIDE MONTE CARLO SI
[50]   A SELF-AVOIDING RANDOM-WALK [J].
LAWLER, GF .
DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) :655-693