Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group

被引:79
作者
De Polsi, Gonzalo [1 ]
Balog, Ivan [2 ]
Tissier, Matthieu [3 ]
Wschebor, Nicolas [4 ]
机构
[1] Univ Republica, Fac Ciencias, Inst Fis, Igua 4225, Montevideo 11400, Uruguay
[2] Inst Phys, Bijenicka Cesta 46, HR-10001 Zagreb, Croatia
[3] Sorbonne Univ, CNRS, LPTMC, F-75005 Paris, France
[4] Univ Republica, Fac Ingn, Inst Fis, JH Y Reissig 565, Montevideo 11000, Uruguay
关键词
EQUATION-OF-STATE; DERIVATIVE EXPANSION; LARGE N; MODEL; FLOW; TRANSITION;
D O I
10.1103/PhysRevE.101.042113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We compute the critical exponents nu, eta and omega of O(N) models for various values of N by implementing the derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually denoted O(partial derivative(4))]. We analyze the behavior of this approximation scheme at successive orders and observe an apparent convergence with a small parameter, typically between 1/9 and 1/4, compatible with previous studies in the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents with a precision which is similar or better than those obtained by most field-theoretical techniques. We also reach a better precision than Monte Carlo simulations in some physically relevant situations. In the O(2) case, where there is a long-standing controversy between Monte Carlo estimates and experiments for the specific heat exponent alpha, our results are compatible with those of Monte Carlo but clearly exclude experimental values.
引用
收藏
页数:22
相关论文
共 85 条
[1]  
[Anonymous], 2005, J HIGH ENERGY PHYS
[2]  
[Anonymous], ARXIV12110780
[3]  
[Anonymous], 2002, Int. Ser. Monogr. Phys.
[4]  
[Anonymous], 1997, CONFORMAL FIELD THEO
[5]   CRITICAL EXPONENTS FOR A 3-DIMENSIONAL O(N)-SYMMETRICAL MODEL WITH N-GREATER-THAN-3 [J].
ANTONENKO, SA ;
SOKOLOV, AI .
PHYSICAL REVIEW E, 1995, 51 (03) :1894-1898
[6]   Convergence of Nonperturbative Approximations to the Renormalization Group [J].
Balog, Ivan ;
Chate, Hugues ;
Delamotte, Bertrand ;
Marohnic, Maroje ;
Wschebor, Nicolas .
PHYSICAL REVIEW LETTERS, 2019, 123 (24)
[7]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[8]   Nonperturbative renormalization group preserving full-momentum dependence: Implementation and quantitative evaluation [J].
Benitez, F. ;
Blaizot, J. -P. ;
Chate, H. ;
Delamotte, B. ;
Mendez-Galain, R. ;
Wschebor, N. .
PHYSICAL REVIEW E, 2012, 85 (02)
[9]   Solutions of renormalization-group flow equations with full momentum dependence [J].
Benitez, F. ;
Blaizot, J. -P. ;
Chate, H. ;
Delamotte, B. ;
Mendez-Galain, R. ;
Wschebor, N. .
PHYSICAL REVIEW E, 2009, 80 (03)
[10]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386