Compressive dynamic scission of carbon nanotubes under sonication: fracture by atomic ejection

被引:29
作者
Chew, H. B. [1 ]
Moon, M. -W. [2 ]
Lee, K. -R. [2 ]
Kim, K. -S. [1 ]
机构
[1] Brown Univ, Sch Engn, Providence, RI 02912 USA
[2] Korea Inst Sci & Technol, Interdisciplinary Fus Technol Div, Computat Sci Ctr, Seoul 136791, South Korea
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2011年 / 467卷 / 2129期
基金
美国国家科学基金会;
关键词
atomic scission; carbon nanotube; buckling; nanofluidics; sonication; BUBBLE; CAVITATION; SONOLUMINESCENCE; MECHANISM; ENERGY; LENGTH;
D O I
10.1098/rspa.2010.0495
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report that a graphene sheet has an unusual mode of atomic-scale fracture owing to its structural peculiarity, i.e. single sheet of atoms. Unlike conventional bond-breaking tensile fracture, a graphene sheet can be cut by in-plane compression, which is able to eject a row of atoms out-of-plane. Our scale-bridging molecular dynamics simulations and experiments reveal that this compressive atomic-sheet fracture is the critical precursor mechanism of cutting single-walled carbon nanotubes (SWCNTs) by sonication. The atomic-sheet fracture typically occurs within 200 fs during the dynamic axial buckling of a SWCNT; the nanotube is loaded by local nanoscale flow drag of water molecules caused by the collapse of a microbubble during sonication. This is on the contrary to common speculations that the nanotubes would be cut in tension, or by high-temperature chemical reactions in ultrasonication processes. The compressive fracture mechanism clarifies previously unexplainable diameter-dependent cutting of the SWCNTs under sonication.
引用
收藏
页码:1270 / 1289
页数:20
相关论文
共 34 条
[1]   Plastic deformations in mechanically strained single-walled carbon nanotubes [J].
Bozovic, D ;
Bockrath, M ;
Hafner, JH ;
Lieber, CM ;
Park, H ;
Tinkham, M .
PHYSICAL REVIEW B, 2003, 67 (03)
[2]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[3]   Single-bubble sonoluminescence [J].
Brenner, MP ;
Hilgenfeldt, S ;
Lohse, D .
REVIEWS OF MODERN PHYSICS, 2002, 74 (02) :425-484
[4]   Chirality-resolved length analysis of single-walled carbon nanotube samples through shear-aligned photoluminescence anisotropy [J].
Casey, John P. ;
Bachilo, Sergei M. ;
Moran, Christine H. ;
Weisman, R. Bruce .
ACS NANO, 2008, 2 (08) :1738-1746
[5]   Bending and buckling of carbon nanotubes under large strain [J].
Falvo, MR ;
Clary, GJ ;
Taylor, RM ;
Chi, V ;
Brooks, FP ;
Washburn, S ;
Superfine, R .
NATURE, 1997, 389 (6651) :582-584
[6]   Plasma formation and temperature measurement during single-bubble cavitation [J].
Flannigan, DJ ;
Suslick, KS .
NATURE, 2005, 434 (7029) :52-55
[7]  
Griffith A.A., 1921, Masinovedenie. C, V221, P163, DOI DOI 10.1098/RSTA.1921.0006
[8]   Concomitant length and diameter separation of single-walled carbon nanotubes [J].
Heller, DA ;
Mayrhofer, RM ;
Baik, S ;
Grinkova, YV ;
Usrey, ML ;
Strano, MS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (44) :14567-14573
[9]   The mechanism of cavitation-induced scission of single-walled carbon nanotubes [J].
Hennrich, Frank ;
Krupke, Ralph ;
Arnold, Katharina ;
Stuetz, Jan A. Rojas ;
Lebedkin, Sergei ;
Koch, Thomas ;
Schimmel, Thomas ;
Kappes, Manfred M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (08) :1932-1937
[10]   Fast mass transport through sub-2-nanometer carbon nanotubes [J].
Holt, JK ;
Park, HG ;
Wang, YM ;
Stadermann, M ;
Artyukhin, AB ;
Grigoropoulos, CP ;
Noy, A ;
Bakajin, O .
SCIENCE, 2006, 312 (5776) :1034-1037