Integrable structure of the dirichlet boundary problem in multiply-connected domains

被引:52
作者
Krichever, I [1 ]
Marshakov, A
Zabrodin, A
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] LD Landau Theoret Phys Inst, Moscow, Russia
[3] ITEP, Moscow, Russia
[4] Max Planck Inst Math, D-5300 Bonn, Germany
[5] PN Lebedev Phys Inst, Moscow 117924, Russia
[6] Inst Biochem Phys, Moscow, Russia
关键词
D O I
10.1007/s00220-005-1387-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the integrable structure of the Dirichlet boundary problem in two dimensions and extend the approach to the case of planar multiply-connected domains. The solution to the Dirichlet boundary problem in the multiply-connected case is given through a quasiclassical tau-function, which generalizes the tau-function of the dispersionless Toda hierarchy. It is shown to obey an infinite hierarchy of Hirota-like equations which directly follow from properties of the Dirichlet Green function and from the Fay identities. The relation to multi-support solutions of matrix models is briefly discussed.
引用
收藏
页码:1 / 44
页数:44
相关论文
共 30 条
  • [1] DOMAINS ON WHICH ANALYTIC-FUNCTIONS SATISFY QUADRATURE IDENTITIES
    AHARONOV, D
    SHAPIRO, HS
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 : 39 - 73
  • [2] Free energy of the two-matrix model/dToda tau-function
    Bertola, M
    [J]. NUCLEAR PHYSICS B, 2003, 669 (03) : 435 - 461
  • [3] Associativity equations in dispersionless integrable hierarchies
    Boyarsky, A
    Marshakov, A
    Ruchayskiy, O
    Wiegmann, P
    Zabrodin, A
    [J]. PHYSICS LETTERS B, 2001, 515 (3-4) : 483 - 492
  • [4] WDVV equations as functional relations
    Braden, HW
    Marshakov, A
    [J]. PHYSICS LETTERS B, 2002, 541 (3-4) : 376 - 383
  • [5] DAVIS PJ, 1974, CARUS MATH MONOGRAPH, V17
  • [6] Electric-magnetic duality and WDVV equations
    de Wit, B
    Marshakov, AV
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 129 (02) : 1504 - 1510
  • [7] ETINGOF P, 1992, U LECT SERIES, V3
  • [8] EYNARD B, 2003, LARGE N EXPANSION 2
  • [9] Fay J D., 1973, Theta Functions on Riemann Surfaces (Lecture Notes in Mathematics vol 352)
  • [10] Gakhov F. D., 1977, BOUNDARY VALUE PROBL